From Wikipedia, the free encyclopedia

Coluracetam, a high-affinity choline uptake (HACU) enhancer

A reuptake enhancer (RE), also sometimes referred to as a reuptake activator, is a type of reuptake modulator which enhances the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron, leading to a decrease in the extracellular concentrations of the neurotransmitter and therefore a decrease in neurotransmission.

The antidepressant tianeptine was once claimed to be a (selective) serotonin reuptake enhancer (SRE or SSRE), but the role of serotonin reuptake in its mechanism is doubtful. Tianeptine has no affinity for the serotonin transporter, neither increases nor decreases extracellular levels of serotonin in cortico- limbic structures of conscious rats, and it didn't show any other long-term effect on the serotonin pathway. [1] Ultimately, tianeptine was determined to be a selective mu opioid receptor agonist.

Coluracetam is a choline-reuptake enhancer. [2] The flavone luteoline as well as some of its derivatives enhance the reuptake at the dopamine transporter, [3] [4] extracts of Caulis Sinomenii activate DA/NE transporters. [5]

See also

References

  1. ^ McEwen, B. S.; Chattarji, S.; Diamond, D. M.; Jay, T. M.; Reagan, L. P.; Svenningsson, P.; Fuchs, E. (March 2010). "The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation". Molecular Psychiatry. 15 (3): 237–249. doi: 10.1038/mp.2009.80. PMC  2902200. PMID  19704408.
  2. ^ Bessho, Tomoko; Takashina, Ken; Eguchi, Junichi; Komatsu, Teiko; Saito, Ken-Ichi (July 2008). "MKC-231, a choline-uptake enhancer: (1) long-lasting cognitive improvement after repeated administration in AF64A-treated rats". J Neural Transm. 115 (7): 1019–25. doi: 10.1007/s00702-008-0053-4. PMID  18461272. S2CID  20201642.
  3. ^ Zhao G, Qin GW, Wang J, Chu WJ, Guo LH (2010). "Functional activation of monoamine transporters by luteolin and apigenin isolated from the fruit of Perilla frutescens (L.) Britt". Neurochem. Int. 56 (1): 168–76. doi: 10.1016/j.neuint.2009.09.015. PMID  19815045. S2CID  24753206.
  4. ^ Zhang J, Liu X, Lei X, et al. (2010). "Discovery and synthesis of novel luteolin derivatives as DAT agonists". Bioorg. Med. Chem. 18 (22): 7842–8. doi: 10.1016/j.bmc.2010.09.049. PMID  20971650.
  5. ^ Zhao G, Bi C, Qin GW, Guo LH (2009). "Caulis Sinomenii extracts activate DA/NE transporter and inhibit 5HT transporter". Exp. Biol. Med. (Maywood). 234 (8): 976–85. doi: 10.3181/0903-RM-92. PMID  19491370. S2CID  22915943.