From Wikipedia, the free encyclopedia
(Redirected from Quasi-barrelled space)

In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infra barreled) if every bounded barrel is a neighborhood of the origin. [1]

Similarly, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

Definition

A subset of a topological vector space (TVS) is called bornivorous if it absorbs all bounded subsets of ; that is, if for each bounded subset of there exists some scalar such that A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood of the origin. [2] [3]

Characterizations

If is a Hausdorff locally convex space then the canonical injection from into its bidual is a topological embedding if and only if is infrabarrelled. [4]

A Hausdorff topological vector space is quasibarrelled if and only if every bounded closed linear operator from into a complete metrizable TVS is continuous. [5] By definition, a linear operator is called closed if its graph is a closed subset of

For a locally convex space with continuous dual the following are equivalent:

  1. is quasibarrelled.
  2. Every bounded lower semi-continuous semi-norm on is continuous.
  3. Every -bounded subset of the continuous dual space is equicontinuous.

If is a metrizable locally convex TVS then the following are equivalent:

  1. The strong dual of is quasibarrelled.
  2. The strong dual of is barrelled.
  3. The strong dual of is bornological.

Properties

Every quasi-complete infrabarrelled space is barrelled. [1]

A locally convex Hausdorff quasibarrelled space that is sequentially complete is barrelled. [6]

A locally convex Hausdorff quasibarrelled space is a Mackey space, quasi-M-barrelled, and countably quasibarrelled. [7]

A locally convex quasibarrelled space that is also a σ-barrelled space is necessarily a barrelled space. [3]

A locally convex space is reflexive if and only if it is semireflexive and quasibarrelled. [3]

Examples

Every barrelled space is infrabarrelled. [1] A closed vector subspace of an infrabarrelled space is, however, not necessarily infrabarrelled. [8]

Every product and locally convex direct sum of any family of infrabarrelled spaces is infrabarrelled. [8] Every separated quotient of an infrabarrelled space is infrabarrelled. [8]

Every Hausdorff barrelled space and every Hausdorff bornological space is quasibarrelled. [9] Thus, every metrizable TVS is quasibarrelled.

Note that there exist quasibarrelled spaces that are neither barrelled nor bornological. [3] There exist Mackey spaces that are not quasibarrelled. [3] There exist distinguished spaces, DF-spaces, and -barrelled spaces that are not quasibarrelled. [3]

The strong dual space of a Fréchet space is distinguished if and only if is quasibarrelled. [10]

Counter-examples

There exists a DF-space that is not quasibarrelled. [3]

There exists a quasibarrelled DF-space that is not bornological. [3]

There exists a quasibarrelled space that is not a σ-barrelled space. [3]

See also

References

Bibliography

  • Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN  978-3-540-08662-8. OCLC  297140003.
  • Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN  978-0-387-90081-0. OCLC  878109401.
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN  3-540-13627-4. OCLC  17499190.
  • Conway, John B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN  978-0-387-97245-9. OCLC  21195908.
  • Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN  978-0-486-68143-6. OCLC  30593138.
  • Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN  978-0-677-30020-7. OCLC  886098.
  • Hogbe-Nlend, Henri (1977). Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-Bornology and its use in Functional Analysis. North-Holland Mathematics Studies. Vol. 26. Amsterdam New York New York: North Holland. ISBN  978-0-08-087137-0. MR  0500064. OCLC  316549583.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN  978-3-540-09096-0. OCLC  4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN  978-3-519-02224-4. OCLC  8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN  978-3-540-11565-6. OCLC  8588370.
  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN  978-3-642-64988-2. MR  0248498. OCLC  840293704.
  • Köthe, Gottfried (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. Vol. 237. New York: Springer Science & Business Media. ISBN  978-0-387-90400-9. OCLC  180577972.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN  978-1584888666. OCLC  144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN  978-1-4612-7155-0. OCLC  840278135.
  • Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN  978-0-8247-8643-4. OCLC  24909067.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN  978-0-486-45352-1. OCLC  853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN  978-0-486-49353-4. OCLC  849801114.
  • Wong, Yau-Chuen (1979). Schwartz Spaces, Nuclear Spaces, and Tensor Products. Lecture Notes in Mathematics. Vol. 726. Berlin New York: Springer-Verlag. ISBN  978-3-540-09513-2. OCLC  5126158.