From Wikipedia, the free encyclopedia
phytanoyl-CoA dioxygenase
The structure of human PAHX ( PDB: 2A1X​). The Fe(II) cofactor is shown as an orange sphere, coordinated by two histidine and one aspartate residues (shown in green) and by the 2-oxoglutarate cosubstrate (shown in yellow). [1]
Identifiers
EC no. 1.14.11.18
CAS no. 185402-46-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
phytanoyl-CoA 2-hydroxylase
Identifiers
SymbolPHYH
Alt. symbolsPAHX
NCBI gene 5264
HGNC 8940
OMIM 602026
RefSeq NM_001037537
UniProt O14832
Other data
Locus Chr. 10 p15.3-10p12.2
Search for
Structures Swiss-model
Domains InterPro

In enzymology, a phytanoyl-CoA dioxygenase ( EC 1.14.11.18) is an enzyme that catalyzes the chemical reaction

phytanoyl-CoA + 2-oxoglutarate + O2 2-hydroxyphytanoyl-CoA + succinate + CO2

The three substrates of this enzyme are phytanoyl-CoA, 2-oxoglutarate (2OG), and O2, whereas its three products are 2-hydroxyphytanoyl-CoA, succinate, and CO2.

This enzyme belongs to the family of iron(II)-dependent oxygenases, which typically incorporate one atom of dioxygen into the substrate and one atom into the succinate carboxylate group. The mechanism is complex, but is believed to involve ordered binding of 2-oxoglutarate to the iron(II) containing enzyme followed by substrate. Binding of substrate causes displacement of a water molecule from the iron(II) cofactor, leaving a vacant coordination position to which dioxygen binds. A rearrangement occurs to form a high energy iron-oxygen species (which is generally thought to be an iron(IV)=O species) that performs the actual oxidation reaction. [2] [3]

Nomenclature

The systematic name of this enzyme class is phytanoyl-CoA, 2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating). These enzymes are also called phytanoyl-CoA hydroxylases and phytanoyl-CoA alpha-hydroxylases. [4]

Examples

In humans, phytanoyl-CoA hydroxylase is encoded by the PHYH (aka PAHX) gene and is required for the alpha-oxidation of branched chain fatty acids (e.g. phytanic acid) in peroxisomes. PHYH deficiency results in the accumulation of large tissue stores of phytanic acid and is the major cause of Refsum disease. [5]

Related enzymes

Iron(II) and 2OG-dependent oxygenases are common in microorganisms, plants, and animals; the human genome is predicted to contain about 80 examples, and the model plant Arabidopsis thaliana likely contains more. [2] In plants and microorganisms this enzyme family is associated with a large diversity of oxidative reactions. [6]

References

  1. ^ McDonough MA, Kavanagh KL, Butler D, Searls T, Oppermann U, Schofield CJ (Dec 2005). "Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease". The Journal of Biological Chemistry. 280 (49): 41101–10. doi: 10.1074/jbc.M507528200. PMID  16186124.
  2. ^ a b Hausinger RP (2015). "CHAPTER 1. Biochemical Diversity of 2-Oxoglutarate-Dependent Oxygenases". 2-Oxoglutarate-Dependent Oxygenases. Metallobiology. pp. 1–58. doi: 10.1039/9781782621959-00001. ISBN  978-1-84973-950-4. S2CID  85596364.
  3. ^ Martinez S, Hausinger RP (Aug 2015). "Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases". The Journal of Biological Chemistry. 290 (34): 20702–11. doi: 10.1074/jbc.R115.648691. PMC  4543632. PMID  26152721.
  4. ^ "PHYH phytanoyl-CoA 2-hydroxylase [ Homo sapiens (human) ]". National Center for Biotechnology Information.
  5. ^ Mihalik SJ, Morrell JC, Kim D, Sacksteder KA, Watkins PA, Gould SJ (Oct 1997). "Identification of PAHX, a Refsum disease gene". Nature Genetics. 17 (2): 185–9. doi: 10.1038/ng1097-185. PMID  9326939. S2CID  39214017.
  6. ^ McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ (Dec 2010). "Structural studies on human 2-oxoglutarate dependent oxygenases". Current Opinion in Structural Biology. 20 (6): 659–72. doi: 10.1016/j.sbi.2010.08.006. PMID  20888218.

Further reading

External links