From Wikipedia, the free encyclopedia
acylglycerol lipase
Reaction catalyzed by MGLL, in which a free fatty acid (FFA) is released from a monoacylglycerol (MAG)
Identifiers
EC no. 3.1.1.23
CAS no. 9040-75-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
monoglyceride lipase
Identifiers
SymbolMGLL
NCBI gene 11343
HGNC 17038
OMIM 609699
RefSeq NM_007283
UniProt Q99685
Other data
EC number 3.1.1.23
Locus Chr. 3 p13-q13.33
Search for
Structures Swiss-model
Domains InterPro

Monoacylglycerol lipase (EC 3.1.1.23; systematic name glycerol-ester acylhydrolase, also known as MAG lipase, acylglycerol lipase, MAGL, MGL or MGLL) is an enzyme that, in humans, is encoded by the MGLL gene. [1] [2] [3] MAGL is a 33-kDa, membrane-associated member of the serine hydrolase superfamily and contains the classical GXSXG consensus sequence common to most serine hydrolases. The catalytic triad has been identified as Ser122, His269, and Asp239. [2] [4]

Human monoacylglycerol lipase

Function

Monoacylglycerol lipase catalyzes a reaction that uses water molecules to break the glycerol monoesters of long-chain fatty acids:

hydrolyses glycerol monoesters of long-chain fatty acids

It functions together with hormone-sensitive lipase (LIPE) to hydrolyze intracellular triglyceride stores in adipocytes and other cells to fatty acids and glycerol. MGLL may also complement lipoprotein lipase (LPL) in completing hydrolysis of monoglycerides resulting from degradation of lipoprotein triglycerides. [5]

Monoacylglycerol lipase is a key enzyme in the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG). [6] [7] It converts monoacylglycerols to the free fatty acid and glycerol. The contribution of MAGL to total brain 2-AG hydrolysis activity has been estimated to be ~85% ( ABHD6 and ABHD12 are responsible for ~4% and ~9%, respectively, of the remainder), [8] [9] and this in vitro estimate has been confirmed in vivo by the selective MAGL inhibitor JZL184. [10] Chronic inactivation of MAGL results in massive (>10-fold) elevations of brain 2-AG in mice, along with marked compensatory downregulation of CB1 receptors in selective brain areas. [11]

Inhibitors

MAGL enzyme inhibitors ( URB602, URB754, JZL184) produce cannabinoid behavioral effects in mice. [10]

Further examples include:[ citation needed]

  1. KML-29
  2. JZL195
  3. JNJ-42165279
  4. JW 642

See also

References

  1. ^ Wall EM, Cao J, Chen N, Buller RM, Upton C (December 1997). "A novel poxvirus gene and its human homolog are similar to an E. coli lysophospholipase". Virus Research. 52 (2): 157–67. doi: 10.1016/S0168-1702(97)00122-6. PMID  9495531.
  2. ^ a b Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C (October 1997). "cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases". The Journal of Biological Chemistry. 272 (43): 27218–23. doi: 10.1074/jbc.272.43.27218. PMID  9341166.
  3. ^ "Entrez Gene: monoglyceride lipase".
  4. ^ Tornqvist H, Belfrage P (February 1976). "Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue". The Journal of Biological Chemistry. 251 (3): 813–9. doi: 10.1016/S0021-9258(17)33857-7. PMID  1249056.
  5. ^ Karlsson M, Reue K, Xia YR, Lusis AJ, Langin D, Tornqvist H, Holm C (July 2001). "Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene". Gene. 272 (1–2): 11–8. doi: 10.1016/S0378-1119(01)00559-5. PMID  11470505.
  6. ^ Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (August 2002). "Brain monoglyceride lipase participating in endocannabinoid inactivation". Proceedings of the National Academy of Sciences of the United States of America. 99 (16): 10819–24. Bibcode: 2002PNAS...9910819D. doi: 10.1073/pnas.152334899. PMC  125056. PMID  12136125.
  7. ^ Makara JK, Mor M, Fegley D, Szabó SI, Kathuria S, Astarita G, Duranti A, Tontini A, Tarzia G, Rivara S, Freund TF, Piomelli D (September 2005). "Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus". Nature Neuroscience. 8 (9): 1139–41. doi: 10.1038/nn1521. PMID  16116451. S2CID  52810445.
  8. ^ Cannabinoid Receptors—Advances in Research and Application: 2012 Edition: ScholarlyBrief. ScholarlyEditions. 26 December 2012. pp. 68–. ISBN  978-1-4816-0672-1.
  9. ^ Blankman JL, Simon GM, Cravatt BF (December 2007). "A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol". Chemistry & Biology. 14 (12): 1347–56. doi: 10.1016/j.chembiol.2007.11.006. PMC  2692834. PMID  18096503.
  10. ^ a b Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavón FJ, Serrano AM, Selley DE, Parsons LH, Lichtman AH, Cravatt BF (January 2009). "Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects". Nature Chemical Biology. 5 (1): 37–44. doi: 10.1038/nchembio.129. PMC  2605181. PMID  19029917.
  11. ^ Savinainen JR, Saario SM, Laitinen JT (February 2012). "The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors". Acta Physiologica. 204 (2): 267–76. doi: 10.1111/j.1748-1716.2011.02280.x. PMC  3320662. PMID  21418147.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.