From Wikipedia, the free encyclopedia
(Redirected from EC 2.5.1.7)
UDP-N-acetylglucosamine 1-carboxyvinyltransferase
UDP-N-acetylglucosamine 1-carboxyvinyltransferase tetramer, Enterobacter cloacae
Identifiers
EC no. 2.5.1.7
CAS no. 9023-27-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an UDP-N-acetylglucosamine 1-carboxyvinyltransferase ( EC 2.5.1.7) is an enzyme [1] that catalyzes the first committed step in peptidoglycan biosynthesis of bacteria:

phosphoenolpyruvate + UDP-N-acetyl-D-glucosamine phosphate + UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine

Thus, the two substrates of this enzyme are phosphoenolpyruvate and UDP-N-acetyl-D-glucosamine, whereas its two products are phosphate and UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine. The pyruvate moiety provides the linker that bridges the glycan and peptide portion of peptidoglycan. [2]

The enzyme is inhibited by the antibiotic fosfomycin, which covalently modifies an active site cysteine residue. [3]

This enzyme belongs to the family of transferases, specifically those transferring aryl or alkyl groups other than methyl groups. The systematic name of this enzyme class is phosphoenolpyruvate:UDP-N-acetyl-D-glucosamine 1-carboxyvinyltransferase. [4] This enzyme participates in amino sugars metabolism and glycan biosynthesis.

Structural studies

As of late 2007, 10 structures have been solved for this class of enzymes, with PDB accession codes 1A2N, 1DLG, 1EJC, 1EJD, 1EYN, 1NAW, 1Q3G, 1RYW, 1UAE, and 1YBG.

References

  1. ^ "Enolpyruvate transferase, EPT family". Retrieved 2008-11-23.
  2. ^ Brown ED, Vivas EI, Walsh CT, Kolter R (July 1995). "MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli". J. Bacteriol. 177 (14): 4194–7. doi: 10.1128/jb.177.14.4194-4197.1995. PMC  177162. PMID  7608103.
  3. ^ King, Michael B. (2005). Lange Q & A. New York: McGraw-Hill, Medical Pub. Division. pp.  298. ISBN  0-07-144578-1.
  4. ^ Other names in common use include MurA transferase, UDP-N-acetylglucosamine 1-carboxyvinyl-transferase, UDP-N-acetylglucosamine enoylpyruvyltransferase, enoylpyruvate transferase, phosphoenolpyruvate-UDP-acetylglucosamine-3-enolpyruvyltransferase, phosphoenolpyruvate:UDP-2-acetamido-2-deoxy-D-glucose 2-enoyl-1-carboxyethyltransferase, phosphoenolpyruvate:uridine diphosphate N-acetylglucosamine enolpyruvyltransferase, phosphoenolpyruvate:uridine-5'-diphospho-N-acetyl-2-amino-2-deoxyglucose 3-enolpyruvyltransferase, phosphopyruvate-uridine diphosphoacetylglucosamine pyruvatetransferase, pyruvate-UDP-acetylglucosamine transferase, pyruvate-uridine diphospho-N-acetylglucosamine transferase, pyruvate-uridine diphospho-N-acetyl-glucosamine transferase, and pyruvic-uridine diphospho-N-acetylglucosaminyltransferase.

Literature

  • Gunetileke KG, Anwar RA (1968). "Biosynthesis of uridine diphospho-N-acetylmuramic acid. II Purification and properties of pyruvate-uridine diphospho-N-acetylglucosamine transferase and characterization of uridine diphospho-N-acetylenopyruvylglucosamine". J. Biol. Chem. 243 (21): 5770–8. PMID  5699062.
  • Zemell RI, Anwar RA (1975). "Pyruvate-uridine diphospho-N-acetylglucosamine transferase Purification to homogeneity and feedback inhibition". J. Biol. Chem. 250 (8): 3185–92. PMID  1123336.
  • van Heijenoort J (2001). "Recent advances in the formation of the bacterial peptidoglycan monomer unit". Nat. Prod. Rep. 18 (5): 503–19. doi: 10.1039/a804532a. PMID  11699883.