From Wikipedia, the free encyclopedia

In mathematics, more specifically in the context of geometric quantization, quantization commutes with reduction states that the space of global sections of a line bundle L satisfying the quantization condition [1] on the symplectic quotient of a compact symplectic manifold is the space of invariant sections[ vague] of L.

This was conjectured in 1980s by Guillemin and Sternberg and was proven in 1990s by Meinrenken [2] [3] (the second paper used symplectic cut) as well as Tian and Zhang. [4] For the formulation due to Teleman, see C. Woodward's notes.

See also

Notes

  1. ^ This means that the curvature of the connection on the line bundle is the symplectic form.
  2. ^ Meinrenken 1996
  3. ^ Meinrenken 1998
  4. ^ Tian & Zhang 1998

References

  • Guillemin, V.; Sternberg, S. (1982), "Geometric quantization and multiplicities of group representations", Inventiones Mathematicae, 67 (3): 515–538, Bibcode: 1982InMat..67..515G, doi: 10.1007/BF01398934, MR  0664118, S2CID  121632102
  • Meinrenken, Eckhard (1996), "On Riemann-Roch formulas for multiplicities", Journal of the American Mathematical Society, 9 (2): 373–389, doi: 10.1090/S0894-0347-96-00197-X, MR  1325798.
  • Meinrenken, Eckhard (1998), "Symplectic surgery and the Spinc-Dirac operator", Advances in Mathematics, 134 (2): 240–277, arXiv: dg-ga/9504002, doi: 10.1006/aima.1997.1701, MR  1617809.
  • Tian, Youliang; Zhang, Weiping (1998), "An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg", Inventiones Mathematicae, 132 (2): 229–259, Bibcode: 1998InMat.132..229T, doi: 10.1007/s002220050223, MR  1621428, S2CID  119943992.
  • Woodward, Christopher T. (2010), "Moment maps and geometric invariant theory", Les Cours du CIRM, 1 (1): 55–98, arXiv: 0912.1132, Bibcode: 2009arXiv0912.1132W, doi: 10.5802/ccirm.4