From Wikipedia, the free encyclopedia
Structure of human PGLYRP1 protein. Based on PyMOL rendering of PDB 1yck.

Peptidoglycan recognition proteins (PGRPs) are a group of highly conserved pattern recognition receptors with at least one peptidoglycan recognition domain capable of recognizing the peptidoglycan component of the cell wall of bacteria. They are present in insects, mollusks, echinoderms and chordates. The mechanism of action of PGRPs varies between taxa. In insects, PGRPs kill bacteria indirectly by activating one of four unique effector pathways: prophenoloxidase cascade, Toll pathway, IMD pathway, and induction of phagocytosis. [1] [2] [3] [4] In mammals, PGRPs either kill bacteria directly by interacting with their cell wall or outer membrane, or hydrolyze peptidoglycan. [1] [2] [3] [4] They also modulate inflammation and microbiome and interact with host receptors. [1] [3]

Discovery

The first PGRP was discovered in 1996 by Masaaki Ashida and coworkers, who purified a 19 kDa protein present in the hemolymph and cuticle of a silkworm ( Bombyx mori), and named it Peptidoglycan Recognition Protein, because it specifically bound peptidoglycan and activated the prophenoloxidase cascade. [5] In 1998 Håkan Steiner and coworkers, using a differential display screen, identified and cloned a PGRP ortholog in a moth ( Trichoplusia ni) and then discovered and cloned mouse and human PGRP orthologs, [6] thus showing that PGRPs are highly conserved from insects to mammals. Also in 1998, Sergei Kiselev and coworkers independently discovered and cloned a protein from a mouse adenocarcinoma with the same sequence as PGRP, which they named Tag7. [7] In 1999 Masanori Ochiai and Masaaki Ashida cloned the silkworm (B. mori) PGRP. [8]

In 2000, based on the available sequence of the fruit fly ( Drosophila melanogaster) genome, Dan Hultmark and coworkers discovered a family of 12 highly diversified PGRP genes in Drosophila, [9] which they classified into short (S) and long (L) forms based on the size of their transcripts. By homology searches of available sequences, they also predicted the presence of a long form of human and mouse PGRP (PGRP-L). [9]

In 2001, Roman Dziarski and coworkers discovered and cloned three human PGRPs, named PGRP-L, PGRP-Iα, and PGRP-Iβ (for long and intermediate size transcripts). [10] They established that human genome codes for a family of 4 PGRPs: PGRP-S (short PGRP) [6] and PGRP-L, PGRP-Iα, and PGRP-Iβ. [10] Subsequently, the Human Genome Organization Gene Nomenclature Committee changed the gene symbols of PGRP-S, PGRP-L, PGRP-Iα, and PGRP-Iβ to PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, respectively, and this nomenclature is currently also used for other mammalian PGRPs. Sergei Kiselev and coworkers also independently cloned mouse PGLYRP2 (TagL). [11] [12] Thereafter, PGRPs have been identified throughout the animal kingdom, although lower metazoa (e.g., the nematode Caenorhabditis elegans) and plants do not have PGRPs. [2] [3] [4]

In 2003, Byung-Ha Oh and coworkers crystalized PGRP-LB from Drosophila and solved its structure. [13]

Types

Insects generate up to 19 alternatively spliced PGRPs, classified into long (L) and short (S) forms. For instance, the fruit fly (D. melanogaster) has 13 PGRP genes, whose transcripts are alternatively spliced into 19 proteins, while the mosquito ( Anopheles gambiae) has 7 PGRP genes, with 9 splice variants. [1] [2] [9] [14]

Location of human PGLYRP1 gene on chromosome 19 and schematic gene, cDNA, and protein structures with exons, introns, and protein domains indicated.
Location of human PGLYRP2 gene on chromosome 19 and schematic gene, cDNA, and protein structures with exons, introns, and protein domains indicated.
Location of human PGLYRP3 gene on chromosome 1 and schematic gene, cDNA, and protein structures with exons, introns, and protein domains indicated.
Location of human PGLYRP4 gene on chromosome 1 and schematic gene, cDNA, and protein structures with exons, introns, and protein domains indicated.

Mammals have up to four PGRPs, all of which are secreted. These are peptidoglycan recognition protein 1 (PGLYRP1), peptidoglycan recognition protein 2 (PGLYRP2), peptidoglycan recognition protein 3 (PGLYRP3) and peptidoglycan recognition protein 4 (PGLYRP4). [1] [2] [3] [4] [10]

Structure

PGRPs contain at least one C-terminal peptidoglycan recognition domain (PGRP domain), which is about 165 amino acids long. This peptidoglycan-binding type 2 amidase domain is homologous to bacteriophage and bacterial type 2 amidases. [4]

PGRP domain has three peripheral α-helices and several central β-strands that form a peptidoglycan-binding groove on the front face of the molecule, whereas the back of the molecule has a PGRP-specific segment, which is often hydrophobic, diverse among various PGRPs, and not present in bacteriophage amidases. [2] [3] [4] [13] [15] [16]

Invertebrate PGRPs can be small secreted proteins (e.g., PGRP-SB, -SA, -SD, and -LB in Drosophila), larger transmembrane proteins (e.g., PGRP-LA, -LC, and -LF in Drosophila), or intracellular proteins (e.g., PGRP-LEfl in Drosophila). [1] [2] [3] [4] They usually have one C-terminal PGRP domain, with few exceptions, such as Drosophila PGRP-LF, which has two PGRP domains. [1]  Mammalian PGRPs are secreted proteins that typically form dimers and contain either one PGRP domain (e.g., human PGLYRP1 and PGLYRP2) or two PGRP domains (e.g., human PGLYRP3 and PGLYRP4). [1] [3] [17] [18] [19]

Functions

Peptidoglycan binding

PGRPs bind peptidoglycan, the main component of bacterial cell wall. [1] [2] [3] [4] Peptidoglycan is a polymer of β(1-4)-linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptides composed of alternating L- and D- amino acids. MurNAc-tripeptide is the minimum fragment of peptidoglycan that binds to PGRPs and MurNAc-tetrtapeptides and MurNAc-pentapeptides bind with higher affinity. [15] [16] [20] Peptidoglycan binding usually induces a change in the structure of PGRP or interaction with another PGRP molecule that locks MurNAc-peptide in the binding grove. [16] Some PGRPs can discriminate between different amino acids present in the peptide part of peptidoglycan, especially between the amino acid in the third position of peptidoglycan peptide, which is usually L- lysine in Gram-positive cocci or meso-diaminopimelic acid (m-DAP) in Gram-negative bacteria and Gram-positive bacilli. Some PGRPs can also discriminate between MurNAc and its anhydro form. [2] [15] [16] [20] [21]

Functions in insects

PGRPs are the main sensors of bacteria in insects and the main components of their antimicrobial defenses. PGRPs activate signaling cascades that induce production of antimicrobial peptides and other immune effectors. Soluble PGRPs (e.g. PGRP-SA and PGRP-SD in Drosophila) detect L-lysine-containing peptidoglycan and activate a proteolytic cascade that generates an endogenous ligand Spätzle that activates cell-surface Toll-1 receptor. Toll-1 in turn triggers a signal transduction cascade that results in production of antimicrobial peptides primarily active against Gram-positive bacteria and fungi. [1] [2] [3] [22] [23] [24] [25]

Transmembrane PGRPs (e.g., Drosophila PGRP-LC) and intracellular PGRPs (e.g., Drosophila PGRP-LE) function as receptors – they detect m-DAP-containing peptidoglycan and activate IMD (immunodeficiency) signal transduction pathway that induces production of antimicrobial peptides active primarily against Gram-negative bacteria. [1] [2] [3] [26] [27] [28] This activation of IMD pathway also induces production of dual oxidase, which generates antimicrobial reactive oxygen species. [1] [29]

Some insect PGRPs (e.g., Drosophila PGRP-SA and -LE, and B. mori PGRP-S) activate the prophenoloxidase cascade, which results in the formation of melanin, reactive oxygen species, and other antimicrobial compounds. [3] [5] [30] [31]

Several small insect PGRPs (e.g., Drosophila PGRP-SB, -SC, and -LB) are peptidoglycan hydrolases ( N-acetylmuramoyl-L-alanine amidases) that hydrolyzes the amide bond between the MurNAc and L-Ala (the first amino acid in the stem peptide). [1] [32] These amidases act as peptidoglycan scavengers because they render the resulting peptidoglycan fragments unable to bind to PGRP. [1] [32] They abolish cell-activating capacity of peptidoglycan and limit systemic uptake of peptidoglycan from the bacteria-laden intestinal tract and down-regulate or prevent over-activation of host defense pathways. [1] [33] [34] Some of these amidases are also directly bactericidal, which further defends the host against infections and helps to control the numbers of commensal bacteria. [35] [36]

Some other insect PGRPs (e.g., Drosophila PGRP-LF) do not bind peptidoglycan and lack intracellular signaling domain – they complex with PGRP-LC and function to down-regulate activation of the IMD pathway. [1] [37] [38]

Functions in other invertebrates

PGRPs are present and constitutively expressed or induced by bacteria in most invertebrates, including worms, [39] snails, [40] oysters, [41] [42] scallops, [43] [44] squid, [45] and starfish. [46] These PGRPs are confirmed or predicted amidases and some have antibacterial activity. They likely defend the hosts against infections or regulate colonization by certain commensal bacteria, such as Vibrio fischeri in the light organ of Hawaiian bobtail squid, Euprymna scolopes. [47] [48]

Expression and functions in lower vertebrates

Early fish-like chordates, amphioxi ( lancelets), have extensive innate immune system (but no adaptive immunity) and have multiple PGRP genes – e.g., 18 PGRP genes in the Florida lancelet ( Branchiostoma floridae), all of which are predicted peptidoglycan-hydrolyzing amidases and at least one is bactericidal. [49]

Fish, such as zebrafish ( Danio rerio), typically have 4 PGRP genes, [50] but they are not all orthologous to mammalian PGLYRPs and different species may have multiple PGRP splice variants. [51] [52] [53] [54] They are constitutively expressed in many tissues of adult fish, such as liver, gills, intestine, pancreas, spleen, and skin, and bacteria can increase their expression. PGRPs are also highly expressed in developing oocytes and in eggs (e.g., zebrafish PGLYRP2 and PGLYRP5). [50] These PGRPs have both peptidoglycan-hydrolyzing amidase activity and are directly bactericidal to both Gram-positive and Gram-negative bacteria and protect eggs and developing embryos from bacterial infections. [50] They may also regulate several signaling pathways. [55] [56]

Amphibian PGRPs are also proven or predicted amidases and likely have similar functions to fish PGRPs. [4]

Expression in mammals

All four mammalian PGRPs are secreted proteins. [18] [19] [57] [58]

PGLYRP1 ( peptidoglycan recognition protein 1) has the highest level of expression of all mammalian PGRPs. PGLYRP1 is highly constitutively expressed in the bone marrow and in the granules of neutrophils and eosinophils, and also in activated macrophages, lactating mammary gland, and intestinal Peyer's patches' microfold (M) cells, and to a much lesser extent in epithelial cells in the eye, mouth, and respiratory and intestinal tracts. [6] [10] [59] [60] [61] [62] [63] [64] [65] [66]

PGLYRP2 ( peptidoglycan recognition protein 2) is constitutively expressed in the liver, from where it is secreted into the blood. [10] [18] [67] [68] Liver PGLYRP2 and earlier identified serum N-acetylmuramoyl-L-alanine amidase are the same protein encoded by the PGLYRP2 gene. [17] [18] [58] [69] Bacteria and cytokines induce low level of PGLYRP2 expression in the skin and gastrointestinal epithelial cells, [19] [68] [70] [71] intestinal intraepithelial T lymphocytes, dendritic cells, NK ( natural killer) cells, and inflammatory macrophages. [72] [73] Some mammals, e.g. pigs, express multiple splice forms of PGLYRP2 with differential expression. [74]

PGLYRP3 ( peptidoglycan recognition protein 3) and PGLYRP4 ( peptidoglycan recognition protein 4) are constitutively expressed in the skin, in the eye, and in mucous membranes in the tongue, throat, and esophagus, and at a much lower level in the remaining parts of the intestinal tract. [10] [19] [75] [76] PGLYRP4 is also expressed in the salivary glands and mucus-secreting glands in the throat. [19] Bacteria and their products increase expression of PGLYRP3 and PGLYRP4 in keratinocytes and oral epithelial cells. [19] [71] When expressed in the same cells, PGLYRP3 and PGLYRP4 form disulfide-linked heterodimers. [19]

Mouse PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4 are also differentially expressed in the developing brain and this expression is influenced by the intestinal microbiome. [77] Expression of PGLYRP1 is also induced in rat brain by sleep deprivation [78] and in mouse brain by ischemia. [79]

Functions in mammals

Human PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria [19] [63] [80] [81] [82] [83] [84] [85] [86] and a spirochete Borrelia burgdorferi. [87] Mouse [88] [60] and bovine [59] [89] PGLYRP1 also have antibacterial activity, and bovine PGLYRP1 has also antifungal activity. [59] These human PGRPs kill bacteria by simultaneously inducing three synergistic stress responses: oxidative stress, thiol stress, and metal stress. [81] [83] [84] [85] [86] [90] Bacterial killing by these PGRPs does not involve cell membrane permeabilization, cell wall hydrolysis, or osmotic shock, [19] [80] [81] but is synergistic with lysozyme [63] and antibacterial peptides. [80]

Human, [18] [58] mouse, [57] and porcine [74] PGLYRP2 are enzymes, N-acetylmuramoyl-L-alanine amidases, that hydrolyze the amide bond between the MurNAc and L-alanine, the first amino acid in the stem peptide in bacterial cell wall peptidoglycan. The minimal peptidoglycan fragment hydrolyzed by PGLYRP2 is MurNAc-tripeptide. [58] Hydrolysis of peptidoglycan by PGLYRP2 diminishes its pro-inflammatory activity. [72] [91]

Unlike invertebrate and lower vertebrate PGRPs, mammalian PGRPs have only limited role in defense against infections. Intranasal application of PGLYRP3 or PGLYRP4 in mice protects from intranasal lung infection with Staphylococcus aureus and Escherichia coli, [19] [92] and intravenous administration of PGLYRP1 protects mice from systemic Listeria monocytogenes infection. [93] Also, PGLYRP1-deficient mice are more sensitive to systemic infections with non-pathogenic bacteria ( Micrococcus luteus and Bacillus subtilis) [60] and to Pseudomonas aeruginosa-induced keratitis, [64] but not to systemic infections with several pathogenic bacteria (S. aureus and E. coli). [60] However, PGLYRP1 protects mice against B. burgdorferi infection, as mice lacking PGLYRP1 have increased spirochete burden in the heart and joints, but not in the skin, indicating the role for PGLYRP1 in controlling dissemination of B. burgdorferi during the systemic phase of infection. [87] PGLYRP2-deficient mice are more sensitive to P. aeruginosa-induced keratitis [94] and Streptococcus pneumoniae-induced pneumonia and sepsis, [95] and PGLYRP4-deficient mice are more sensitive to S. pneumoniae-induced pneumonia. [96]

Mouse PGRPs play a role in maintaining healthy microbiome, as PGLYRP1-, PGLYRP2-, PGLYRP3-, and PGLYRP4-deficient mice have significant changes in the composition of their intestinal microbiomes [76] [96] [97] [98] and PGLYRP1-deficient mice also have changes in their lung microbiome. [98]

Mouse PGRPs also play a role in maintaining anti- and pro-inflammatory homeostasis in the intestine, skin, lungs, joints, and brain. [1] [99] All four PGLYRPs protect mice from dextran sodium sulfate (DSS)-induced colitis and the effect of PGLYRP2 and PGLYRP3 on the intestinal microbiome is responsible for this protection. [76] [97] [100] PGLYRP3 is anti-inflammatory in intestinal epithelial cells. [101] PGLYRP4 has anti-inflammatory effect in a mouse model of S. pneumoniae pneumonia and sepsis, which also depends on the PGLYRP4-controlled microbiome. [96]

PGLYRP3 and PGLYRP4 are anti-inflammatory and protect mice from atopic dermatitis [102] and PGLYRP4 also protects mice from Bordetella pertussis-induced airway inflammation. [103] PGLYRP2 is anti-inflammatory and protects mice from experimentally-induced psoriasis-like inflammation [104] and Salmonella enterica-induced intestinal inflammation. [73] But PGLYRP2 has also pro-inflammatory effects, as it promotes the development of experimental arthritis, [105] bacterially-induced keratitis, [94] and inflammation in S. pneumoniae lung infection [95] in mice. PGLYRP2 also regulates motor activity and anxiety-dependent behavior in mice. [77] [106]

PGLYRP1 is pro-inflammatory and promotes experimentally-induced asthma, [65] [66] skin inflammation, [102] [104] and experimental autoimmune encephalomyelitis (EAE) [107] in mice. The pro-inflammatory effect in asthma depends on the PGLYRP1-regulated intestinal microbiome, [98] whereas in EAE, it depends on the expression of PGLYRP1 in monocytes, macrophages, and neutrophils. [107] PGLYRP1 also has anti-inflammatory effects, as it inhibits the activation of cytotoxic anti-tumor CD8+ T cells and its deletion leads to decreased tumor growth in mice. [107] Mice lacking PGLYRP1 infected with B. burgdorferi show signs of immune dysregulation, which results in Th1 cytokine response and impairment of antibody response to B. burgdorferi. [87] PGLYRP1 also promotes wound healing in experimentally-induced keratitis in mice. [64]

Some mammalian PGRPs can also function as host receptor agonists or antagonists. Human PGLYRP1 complexed with peptidoglycan or multimerized binds to and stimulates TREM-1 (triggering receptor expressed on myeloid cells-1), a receptor present on neutrophils, monocytes and macrophages that induces production of pro-inflammatory cytokines. [108]

Human and mouse PGLYRP1 (Tag7) bind heat shock protein 70 ( Hsp70) in solution and PGLYRP1-Hsp70 complexes are also secreted by cytotoxic lymphocytes, and these complexes are cytotoxic for tumor cells. [109] [110] This cytotoxicity is antagonized by metastasin ( S100A4) [111] and heat shock-binding protein HspBP1. [112] PGLYRP1-Hsp70 complexes bind to the TNFR1 ( tumor necrosis factor receptor-1, which is a death receptor) and induce a cytotoxic effect via apoptosis and necroptosis. [113] This cytotoxicity is associated with permeabilization of lysosomes and mitochondria. [114] By contrast, free PGLYRP1 acts as a TNFR1 antagonist by binding to TNFR1 and inhibiting its activation by PGLYRP1-Hsp70 complexes. [113] Peptides from human PGLYRP1 also inhibit the cytotoxic effects of TNF-α and PGLYRP1-Hsp70 complexes [115] and cytokine production in human peripheral blood mononuclear cells. [116] They also decrease inflammatory responses in a mouse model of acute lung injury [116] and in the complete Freund's adjuvant-induced arthritis in mice. [117]

Medical relevance

Genetic PGLYRP variants or changed expression of PGRPs are associated with several diseases. Patients with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, have significantly more frequent missense variants in all four PGLYRP genes than healthy controls. [118] These results suggest that PGRPs protect humans from these inflammatory diseases, and that mutations in PGLYRP genes are among the genetic factors predisposing to these diseases. PGLYRP1 variants are also associated with increased fetal hemoglobin in sickle cell disease, [119] PGLYRP2 variants are associated with esophageal squamous cell carcinoma, [120] PGLYRP2, PGLYRP3, and PGLYRP4 variants are associated with Parkinson's disease, [121] [122] [123] PGLYRP3 and PGLYRP4 variants are associated with psoriasis [124] [125] and composition of airway microbiome, [126] and PGLYRP4 variants are associated with ovarian cancer. [127]

Several diseases are associated with increased expression of PGLYRP1, including: atherosclerosis, [128] [129] myocardial infarction, [130] [131] heart failure, [130] [132] coronary artery disease, [132] [133] sepsis, [134] pulmonary fibrosis, [135] asthma, [136] chronic kidney disease, [137] rheumatoid arthritis, [138] gingival inflammation, [139] [140] [141] [142] [143] [144] caries and muscle and joint diseases, [145] osteoarthritis, [146] cardiovascular events and death in kidney transplant patients, [147] ulcerative colitis and Crohn's disease, [148] alopecia, [149] type I diabetes, [150] infectious complications in hemodialysis, [151] and thrombosis, [152] consistent with pro-inflammatory effects of PGLYRP1. Lower expression of PGLYRP1 was found in endometriosis. [153] Umbilical cord blood serum concentration of PGLYRP1 is inversely associated with pediatric asthma and pulmonary function in adolescence. [154]

Increased serum PGLYRP2 levels are present in patients with systemic lupus erythematosus and correlate with disease activity index, renal damage, and abnormal lipid profile. [155] Autoantibodies to PGLYRP2 are significantly increased in patients with rheumatoid arthritis. [156] Decreased expression of PGLYRP2 is found in HIV-associated [157] and drug-sensitive [158] tuberculosis, Lyme disease, [159] hepatocellular carcinoma, [160] and myocardial infarction. [161]

Applications

A silkworm larvae plasma (SLP) test to detect peptidoglycan, based on activation of the prophenoloxidase cascade by PGRP in the hemolymph of the silkworm, Bombyx mori, is available. [162] [163]

See also

References

  1. ^ a b c d e f g h i j k l m n o p q Royet, Julien; Gupta, Dipika; Dziarski, Roman (11 November 2011). "Peptidoglycan recognition proteins: modulators of the microbiome and inflammation". Nature Reviews Immunology. 11 (12): 837–51. doi: 10.1038/nri3089. PMID  22076558. S2CID  5266193.
  2. ^ a b c d e f g h i j k Royet, Julien; Dziarski, Roman (April 2007). "Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences". Nature Reviews Microbiology. 5 (4): 264–277. doi: 10.1038/nrmicro1620. ISSN  1740-1526. PMID  17363965. S2CID  39569790.
  3. ^ a b c d e f g h i j k l Dziarski, Roman; Royet, Julien; Gupta, Dipika (2016), "Peptidoglycan Recognition Proteins and Lysozyme", Encyclopedia of Immunobiology, Elsevier, pp. 389–403, doi: 10.1016/b978-0-12-374279-7.02022-1, ISBN  978-0-08-092152-5, retrieved 2020-10-22
  4. ^ a b c d e f g h i Dziarski, Roman; Gupta, Dipika (2006). "The peptidoglycan recognition proteins (PGRPs)". Genome Biology. 7 (8): 232. doi: 10.1186/gb-2006-7-8-232. PMC  1779587. PMID  16930467.
  5. ^ a b Yoshida, Hideya; Kinoshita, Kuninori; Ashida, Masaaki (1996-06-07). "Purification of a Peptidoglycan Recognition Protein from Hemolymph of the Silkworm, Bombyx mori". Journal of Biological Chemistry. 271 (23): 13854–13860. doi: 10.1074/jbc.271.23.13854. ISSN  0021-9258. PMID  8662762. S2CID  20831557.
  6. ^ a b c Kang, D.; Liu, G.; Lundstrom, A.; Gelius, E.; Steiner, H. (1998-08-18). "A peptidoglycan recognition protein in innate immunity conserved from insects to humans". Proceedings of the National Academy of Sciences. 95 (17): 10078–10082. Bibcode: 1998PNAS...9510078K. doi: 10.1073/pnas.95.17.10078. ISSN  0027-8424. PMC  21464. PMID  9707603.
  7. ^ Kiselev, Sergei L.; Kustikova, Olga S.; Korobko, Elena V.; Prokhortchouk, Egor B.; Kabishev, Andrei A.; Lukanidin, Evgenii M.; Georgiev, Georgii P. (1998-07-17). "Molecular Cloning and Characterization of the Mouse tag7 Gene Encoding a Novel Cytokine". Journal of Biological Chemistry. 273 (29): 18633–18639. doi: 10.1074/jbc.273.29.18633. ISSN  0021-9258. PMID  9660837. S2CID  11417742.
  8. ^ Ochiai, Masanori; Ashida, Masaaki (1999-04-23). "A Pattern Recognition Protein for Peptidoglycan: CLONING THE cDNA AND THE GENE OF THE SILKWORM, BOMBYX MORI". Journal of Biological Chemistry. 274 (17): 11854–11858. doi: 10.1074/jbc.274.17.11854. ISSN  0021-9258. PMID  10207004. S2CID  38022527.
  9. ^ a b c Werner, T.; Liu, G.; Kang, D.; Ekengren, S.; Steiner, H.; Hultmark, D. (2000-12-05). "A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster". Proceedings of the National Academy of Sciences. 97 (25): 13772–13777. Bibcode: 2000PNAS...9713772W. doi: 10.1073/pnas.97.25.13772. ISSN  0027-8424. PMC  17651. PMID  11106397.
  10. ^ a b c d e f Liu, Chao; Xu, Zhaojun; Gupta, Dipika; Dziarski, Roman (2001-09-14). "Peptidoglycan Recognition Proteins: A NOVEL FAMILY OF FOUR HUMAN INNATE IMMUNITY PATTERN RECOGNITION MOLECULES". Journal of Biological Chemistry. 276 (37): 34686–34694. doi: 10.1074/jbc.M105566200. ISSN  0021-9258. PMID  11461926. S2CID  44619852.
  11. ^ Kibardin, A. V.; Mirkina, I. I.; Korneeva, E. A.; Gnuchev, N. V.; Georgiev, G. P.; Kiselev, S. L. (May 2000). "Molecular cloning of a new mouse gene tagL containing a lysozyme-like domain". Doklady Biochemistry: Proceedings of the Academy of Sciences of the USSR, Biochemistry Section. 372 (1–6): 103–105. ISSN  0012-4958. PMID  10935177.
  12. ^ Kibardin, A. V.; Mirkina, I. I.; Baranova, E. V.; Zakeyeva, I. R.; Georgiev, G. P.; Kiselev, S. L. (2003-02-14). "The differentially spliced mouse tagL gene, homolog of tag7/PGRP gene family in mammals and Drosophila, can recognize Gram-positive and Gram-negative bacterial cell wall independently of T phage lysozyme homology domain". Journal of Molecular Biology. 326 (2): 467–474. doi: 10.1016/s0022-2836(02)01401-8. ISSN  0022-2836. PMID  12559914.
  13. ^ a b Kim, Min-Sung; Byun, Minji; Oh, Byung-Ha (August 2003). "Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster". Nature Immunology. 4 (8): 787–793. doi: 10.1038/ni952. ISSN  1529-2908. PMID  12845326. S2CID  11458146.
  14. ^ Christophides, George K.; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T.; Collins, Frank H.; Danielli, Alberto; Dimopoulos, George; Hetru, Charles (2002-10-04). "Immunity-related genes and gene families in Anopheles gambiae". Science. 298 (5591): 159–165. Bibcode: 2002Sci...298..159C. doi: 10.1126/science.1077136. ISSN  1095-9203. PMID  12364793. S2CID  806834.
  15. ^ a b c Guan, Rongjin; Roychowdhury, Abhijit; Ember, Brian; Kumar, Sanjay; Boons, Geert-Jan; Mariuzza, Roy A. (2004-12-07). "Structural basis for peptidoglycan binding by peptidoglycan recognition proteins". Proceedings of the National Academy of Sciences of the United States of America. 101 (49): 17168–17173. Bibcode: 2004PNAS..10117168G. doi: 10.1073/pnas.0407856101. ISSN  0027-8424. PMC  535381. PMID  15572450.
  16. ^ a b c d Guan, Rongjin; Brown, Patrick H.; Swaminathan, Chittoor P.; Roychowdhury, Abhijit; Boons, Geert-Jan; Mariuzza, Roy A. (May 2006). "Crystal structure of human peptidoglycan recognition protein I alpha bound to a muramyl pentapeptide from Gram-positive bacteria". Protein Science. 15 (5): 1199–1206. doi: 10.1110/ps.062077606. ISSN  0961-8368. PMC  2242522. PMID  16641493.
  17. ^ a b De Pauw, P.; Neyt, C.; Vanderwinkel, E.; Wattiez, R.; Falmagne, P. (June 1995). "Characterization of human serum N-acetylmuramyl-L-alanine amidase purified by affinity chromatography". Protein Expression and Purification. 6 (3): 371–378. doi: 10.1006/prep.1995.1049. ISSN  1046-5928. PMID  7663175.
  18. ^ a b c d e Zhang, Yinong; van der Fits, Leslie; Voerman, Jane S.; Melief, Marie-Jose; Laman, Jon D.; Wang, Mu; Wang, Haitao; Wang, Minhui; Li, Xinna; Walls, Chad D.; Gupta, Dipika (2005-08-31). "Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1752 (1): 34–46. doi: 10.1016/j.bbapap.2005.07.001. ISSN  0006-3002. PMID  16054449.
  19. ^ a b c d e f g h i j Lu, Xiaofeng; Wang, Minhui; Qi, Jin; Wang, Haitao; Li, Xinna; Gupta, Dipika; Dziarski, Roman (2006-03-03). "Peptidoglycan recognition proteins are a new class of human bactericidal proteins". The Journal of Biological Chemistry. 281 (9): 5895–5907. doi: 10.1074/jbc.M511631200. ISSN  0021-9258. PMID  16354652. S2CID  21943426.
  20. ^ a b Lim, Jae-Hong; Kim, Min-Sung; Kim, Han-Eol; Yano, Tamaki; Oshima, Yoshiteru; Aggarwal, Kamna; Goldman, William E.; Silverman, Neal; Kurata, Shoichiro; Oh, Byung-Ha (2006-03-24). "Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins". The Journal of Biological Chemistry. 281 (12): 8286–8295. doi: 10.1074/jbc.M513030200. ISSN  0021-9258. PMID  16428381. S2CID  6805851.
  21. ^ Kumar, Sanjay; Roychowdhury, Abhijit; Ember, Brian; Wang, Qian; Guan, Rongjin; Mariuzza, Roy A.; Boons, Geert-Jan (2005-11-04). "Selective recognition of synthetic lysine and meso-diaminopimelic acid-type peptidoglycan fragments by human peptidoglycan recognition proteins I{alpha} and S". The Journal of Biological Chemistry. 280 (44): 37005–37012. doi: 10.1074/jbc.M506385200. ISSN  0021-9258. PMID  16129677. S2CID  44913130.
  22. ^ Rutschmann, S.; Jung, A. C.; Hetru, C.; Reichhart, J. M.; Hoffmann, J. A.; Ferrandon, D. (May 2000). "The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila". Immunity. 12 (5): 569–580. doi: 10.1016/s1074-7613(00)80208-3. ISSN  1074-7613. PMID  10843389.
  23. ^ Michel, T.; Reichhart, J. M.; Hoffmann, J. A.; Royet, J. (2001-12-13). "Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein". Nature. 414 (6865): 756–759. Bibcode: 2001Natur.414..756M. doi: 10.1038/414756a. ISSN  0028-0836. PMID  11742401. S2CID  4401465.
  24. ^ Gobert, Vanessa; Gottar, Marie; Matskevich, Alexey A.; Rutschmann, Sophie; Royet, Julien; Belvin, Marcia; Hoffmann, Jules A.; Ferrandon, Dominique (2003-12-19). "Dual activation of the Drosophila toll pathway by two pattern recognition receptors". Science. 302 (5653): 2126–2130. Bibcode: 2003Sci...302.2126G. doi: 10.1126/science.1085432. ISSN  1095-9203. PMID  14684822. S2CID  36399744.
  25. ^ Bischoff, Vincent; Vignal, Cécile; Boneca, Ivo G.; Michel, Tatiana; Hoffmann, Jules A.; Royet, Julien (November 2004). "Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria". Nature Immunology. 5 (11): 1175–1180. doi: 10.1038/ni1123. ISSN  1529-2908. PMID  15448690. S2CID  22507734.
  26. ^ Leulier, François; Parquet, Claudine; Pili-Floury, Sebastien; Ryu, Ji-Hwan; Caroff, Martine; Lee, Won-Jae; Mengin-Lecreulx, Dominique; Lemaitre, Bruno (May 2003). "The Drosophila immune system detects bacteria through specific peptidoglycan recognition". Nature Immunology. 4 (5): 478–484. doi: 10.1038/ni922. ISSN  1529-2908. PMID  12692550. S2CID  2430114.
  27. ^ Kaneko, Takashi; Goldman, William E.; Mellroth, Peter; Steiner, Håkan; Fukase, Koichi; Kusumoto, Shoichi; Harley, William; Fox, Alvin; Golenbock, Douglas; Silverman, Neal (May 2004). "Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway". Immunity. 20 (5): 637–649. doi: 10.1016/s1074-7613(04)00104-9. ISSN  1074-7613. PMID  15142531.
  28. ^ Choe, Kwang-Min; Lee, Hyangkyu; Anderson, Kathryn V. (2005-01-25). "Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor". Proceedings of the National Academy of Sciences of the United States of America. 102 (4): 1122–1126. Bibcode: 2005PNAS..102.1122C. doi: 10.1073/pnas.0404952102. ISSN  0027-8424. PMC  545828. PMID  15657141.
  29. ^ Ha, Eun-Mi; Lee, Kyung-Ah; Seo, You Yeong; Kim, Sung-Hee; Lim, Jae-Hong; Oh, Byung-Ha; Kim, Jaesang; Lee, Won-Jae (September 2009). "Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut". Nature Immunology. 10 (9): 949–957. doi: 10.1038/ni.1765. ISSN  1529-2916. PMID  19668222. S2CID  26945390.
  30. ^ Takehana, Aya; Katsuyama, Tomonori; Yano, Tamaki; Oshima, Yoshiteru; Takada, Haruhiko; Aigaki, Toshiro; Kurata, Shoichiro (2002-10-15). "Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae". Proceedings of the National Academy of Sciences of the United States of America. 99 (21): 13705–13710. Bibcode: 2002PNAS...9913705T. doi: 10.1073/pnas.212301199. ISSN  0027-8424. PMC  129750. PMID  12359879.
  31. ^ Park, Ji-Won; Kim, Chan-Hee; Kim, Jung-Hyun; Je, Byung-Rok; Roh, Kyung-Baeg; Kim, Su-Jin; Lee, Hyeon-Hwa; Ryu, Ji-Hwan; Lim, Jae-Hong; Oh, Byung-Ha; Lee, Won-Jae (2007-04-17). "Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects". Proceedings of the National Academy of Sciences of the United States of America. 104 (16): 6602–6607. Bibcode: 2007PNAS..104.6602P. doi: 10.1073/pnas.0610924104. ISSN  0027-8424. PMC  1871832. PMID  17409189.
  32. ^ a b Mellroth, Peter; Karlsson, Jenny; Steiner, Hakan (2003-02-28). "A scavenger function for a Drosophila peptidoglycan recognition protein". The Journal of Biological Chemistry. 278 (9): 7059–7064. doi: 10.1074/jbc.M208900200. ISSN  0021-9258. PMID  12496260. S2CID  22490347.
  33. ^ Bischoff, Vincent; Vignal, Cécile; Duvic, Bernard; Boneca, Ivo G.; Hoffmann, Jules A.; Royet, Julien (February 2006). "Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2". PLOS Pathogens. 2 (2): e14. doi: 10.1371/journal.ppat.0020014. ISSN  1553-7374. PMC  1383489. PMID  16518472.
  34. ^ Zaidman-Rémy, Anna; Hervé, Mireille; Poidevin, Mickael; Pili-Floury, Sébastien; Kim, Min-Sung; Blanot, Didier; Oh, Byung-Ha; Ueda, Ryu; Mengin-Lecreulx, Dominique; Lemaitre, Bruno (April 2006). "The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection". Immunity. 24 (4): 463–473. doi: 10.1016/j.immuni.2006.02.012. ISSN  1074-7613. PMID  16618604.
  35. ^ Mellroth, Peter; Steiner, Håkan (2006-12-01). "PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity". Biochemical and Biophysical Research Communications. 350 (4): 994–999. doi: 10.1016/j.bbrc.2006.09.139. ISSN  0006-291X. PMID  17046713.
  36. ^ Wang, Jingwen; Aksoy, Serap (2012-06-26). "PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring". Proceedings of the National Academy of Sciences of the United States of America. 109 (26): 10552–10557. Bibcode: 2012PNAS..10910552W. doi: 10.1073/pnas.1116431109. ISSN  1091-6490. PMC  3387098. PMID  22689989.
  37. ^ Maillet, Frédéric; Bischoff, Vincent; Vignal, Cécile; Hoffmann, Jules; Royet, Julien (2008-05-15). "The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation". Cell Host & Microbe. 3 (5): 293–303. doi: 10.1016/j.chom.2008.04.002. ISSN  1934-6069. PMID  18474356.
  38. ^ Basbous, Nada; Coste, Franck; Leone, Philippe; Vincentelli, Renaud; Royet, Julien; Kellenberger, Christine; Roussel, Alain (April 2011). "The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway". EMBO Reports. 12 (4): 327–333. doi: 10.1038/embor.2011.19. ISSN  1469-3178. PMC  3077246. PMID  21372849.
  39. ^ Blanco, Guillermo A.; Malchiodi, Emilio L.; De Marzi, Mauricio C. (October 2008). "Cellular clot formation in a sipunculan worm: entrapment of foreign particles, cell death and identification of a PGRP-related protein". Journal of Invertebrate Pathology. 99 (2): 156–165. doi: 10.1016/j.jip.2008.05.006. ISSN  1096-0805. PMID  18621387.
  40. ^ Zhang, Si-Ming; Zeng, Yong; Loker, Eric S. (November 2007). "Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein". Immunogenetics. 59 (11): 883–898. doi: 10.1007/s00251-007-0245-3. ISSN  0093-7711. PMC  3632339. PMID  17805526.
  41. ^ Itoh, Naoki; Takahashi, Keisuke G. (August 2008). "Distribution of multiple peptidoglycan recognition proteins in the tissues of Pacific oyster, Crassostrea gigas". Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 150 (4): 409–417. doi: 10.1016/j.cbpb.2008.04.011. ISSN  1096-4959. PMID  18538602.
  42. ^ Iizuka, Masao; Nagasaki, Toshihiro; Takahashi, Keisuke G.; Osada, Makoto; Itoh, Naoki (March 2014). "Involvement of Pacific oyster CgPGRP-S1S in bacterial recognition, agglutination and granulocyte degranulation". Developmental and Comparative Immunology. 43 (1): 30–34. doi: 10.1016/j.dci.2013.10.011. ISSN  1879-0089. PMID  24201133.
  43. ^ Ni, Duojiao; Song, Linsheng; Wu, Longtao; Chang, Yaqing; Yu, Yundong; Qiu, Limei; Wang, Lingling (2007). "Molecular cloning and mRNA expression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819)". Developmental and Comparative Immunology. 31 (6): 548–558. doi: 10.1016/j.dci.2006.09.001. ISSN  0145-305X. PMID  17064771.
  44. ^ Yang, Jialong; Wang, Wan; Wei, Xiumei; Qiu, Limei; Wang, Lingling; Zhang, Huan; Song, Linsheng (December 2010). "Peptidoglycan recognition protein of Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection". Developmental and Comparative Immunology. 34 (12): 1300–1307. doi: 10.1016/j.dci.2010.08.006. ISSN  1879-0089. PMID  20713083.
  45. ^ Goodson, Michael S.; Kojadinovic, Mila; Troll, Joshua V.; Scheetz, Todd E.; Casavant, Thomas L.; Soares, M. Bento; McFall-Ngai, Margaret J. (November 2005). "Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis". Applied and Environmental Microbiology. 71 (11): 6934–6946. Bibcode: 2005ApEnM..71.6934G. doi: 10.1128/AEM.71.11.6934-6946.2005. ISSN  0099-2240. PMC  1287678. PMID  16269728.
  46. ^ Coteur, Geoffroy; Mellroth, Peter; De Lefortery, Coline; Gillan, David; Dubois, Philippe; Communi, David; Steiner, Håkan (2007). "Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata)". Developmental and Comparative Immunology. 31 (8): 790–804. doi: 10.1016/j.dci.2006.11.006. ISSN  0145-305X. PMID  17240448.
  47. ^ Troll, Joshua V.; Adin, Dawn M.; Wier, Andrew M.; Paquette, Nicholas; Silverman, Neal; Goldman, William E.; Stadermann, Frank J.; Stabb, Eric V.; McFall-Ngai, Margaret J. (July 2009). "Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis". Cellular Microbiology. 11 (7): 1114–1127. doi: 10.1111/j.1462-5822.2009.01315.x. ISSN  1462-5822. PMC  2758052. PMID  19416268.
  48. ^ Troll, Joshua V.; Bent, Eric H.; Pacquette, Nicholas; Wier, Andrew M.; Goldman, William E.; Silverman, Neal; McFall-Ngai, Margaret J. (August 2010). "Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin". Environmental Microbiology. 12 (8): 2190–2203. doi: 10.1111/j.1462-2920.2009.02121.x. ISSN  1462-2920. PMC  2889240. PMID  21966913.
  49. ^ Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong (2011-02-15). "The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus". Journal of Immunology. 186 (4): 2042–2055. doi: 10.4049/jimmunol.1001824. ISSN  1550-6606. PMID  21248255. S2CID  25397745.
  50. ^ a b c Li, Xinna; Wang, Shiyong; Qi, Jin; Echtenkamp, Stephen F.; Chatterjee, Rohini; Wang, Mu; Boons, Geert-Jan; Dziarski, Roman; Gupta, Dipika (September 2007). "Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections". Immunity. 27 (3): 518–529. doi: 10.1016/j.immuni.2007.07.020. ISSN  1074-7613. PMC  2074879. PMID  17892854.
  51. ^ Chang, M. X.; Nie, P.; Wei, L. L. (April 2007). "Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish". Molecular Immunology. 44 (11): 3005–3023. doi: 10.1016/j.molimm.2006.12.029. ISSN  0161-5890. PMID  17296228.
  52. ^ Montaño, Adriana M.; Tsujino, Fumi; Takahata, Naoyuki; Satta, Yoko (2011-03-25). "Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system". BMC Evolutionary Biology. 11: 79. doi: 10.1186/1471-2148-11-79. ISSN  1471-2148. PMC  3071341. PMID  21439073.
  53. ^ Li, Jun Hua; Chang, Ming Xian; Xue, Na Na; Nie, P. (August 2013). "Functional characterization of a short peptidoglycan recognition protein, PGRP5 in grass carp Ctenopharyngodon idella". Fish & Shellfish Immunology. 35 (2): 221–230. doi: 10.1016/j.fsi.2013.04.025. ISSN  1095-9947. PMID  23659995.
  54. ^ Li, Jun Hua; Yu, Zhang Long; Xue, Na Na; Zou, Peng Fei; Hu, Jing Yu; Nie, P.; Chang, Ming Xian (February 2014). "Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella". Developmental and Comparative Immunology. 42 (2): 244–255. doi: 10.1016/j.dci.2013.09.014. ISSN  1879-0089. PMID  24099967.
  55. ^ Chang, M. X.; Nie, P. (2008-08-15). "RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare". Veterinary Immunology and Immunopathology. 124 (3–4): 295–301. doi: 10.1016/j.vetimm.2008.04.003. ISSN  0165-2427. PMID  18495251. S2CID  41534729.
  56. ^ Chang, M. X.; Wang, Y. P.; Nie, P. (February 2009). "Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways". Fish & Shellfish Immunology. 26 (2): 264–274. doi: 10.1016/j.fsi.2008.11.007. ISSN  1095-9947. PMID  19084604.
  57. ^ a b Gelius, Eva; Persson, Carina; Karlsson, Jenny; Steiner, Håkan (2003-07-11). "A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity". Biochemical and Biophysical Research Communications. 306 (4): 988–994. doi: 10.1016/s0006-291x(03)01096-9. ISSN  0006-291X. PMID  12821140.
  58. ^ a b c d Wang, Zheng-Ming; Li, Xinna; Cocklin, Ross R.; Wang, Minhui; Wang, Mu; Fukase, Koichi; Inamura, Seiichi; Kusumoto, Shoichi; Gupta, Dipika; Dziarski, Roman (2003-12-05). "Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase". The Journal of Biological Chemistry. 278 (49): 49044–49052. doi: 10.1074/jbc.M307758200. ISSN  0021-9258. PMID  14506276. S2CID  35373818.
  59. ^ a b c Tydell, C. Chace; Yount, Nannette; Tran, Dat; Yuan, Jun; Selsted, Michael E. (2002-05-31). "Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils". The Journal of Biological Chemistry. 277 (22): 19658–19664. doi: 10.1074/jbc.M200659200. ISSN  0021-9258. PMID  11880375. S2CID  904536.
  60. ^ a b c d Dziarski, Roman; Platt, Kenneth A.; Gelius, Eva; Steiner, Håkan; Gupta, Dipika (2003-07-15). "Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice". Blood. 102 (2): 689–697. doi: 10.1182/blood-2002-12-3853. ISSN  0006-4971. PMID  12649138.
  61. ^ Lo, David; Tynan, Wendy; Dickerson, Janet; Mendy, Jason; Chang, Hwai-Wen; Scharf, Melinda; Byrne, Daragh; Brayden, David; Higgins, Lisa; Evans, Claire; O'Mahony, Daniel J. (July 2003). "Peptidoglycan recognition protein expression in mouse Peyer's Patch follicle associated epithelium suggests functional specialization". Cellular Immunology. 224 (1): 8–16. doi: 10.1016/s0008-8749(03)00155-2. ISSN  0008-8749. PMID  14572796.
  62. ^ Kappeler, S. R.; Heuberger, C.; Farah, Z.; Puhan, Z. (August 2004). "Expression of the peptidoglycan recognition protein, PGRP, in the lactating mammary gland". Journal of Dairy Science. 87 (8): 2660–2668. doi: 10.3168/jds.S0022-0302(04)73392-5. ISSN  0022-0302. PMID  15328291.
  63. ^ a b c Cho, Ju Hyun; Fraser, Iain P.; Fukase, Koichi; Kusumoto, Shoichi; Fujimoto, Yukari; Stahl, Gregory L.; Ezekowitz, R. Alan B. (2005-10-01). "Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity". Blood. 106 (7): 2551–2558. doi: 10.1182/blood-2005-02-0530. ISSN  0006-4971. PMC  1895263. PMID  15956276.
  64. ^ a b c Ghosh, Amit; Lee, Seakwoo; Dziarski, Roman; Chakravarti, Shukti (September 2009). "A novel antimicrobial peptidoglycan recognition protein in the cornea". Investigative Ophthalmology & Visual Science. 50 (9): 4185–4191. doi: 10.1167/iovs.08-3040. ISSN  1552-5783. PMC  3052780. PMID  19387073.
  65. ^ a b Park, Shin Yong; Jing, Xuefang; Gupta, Dipika; Dziarski, Roman (2013-04-01). "Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses". Journal of Immunology. 190 (7): 3480–3492. doi: 10.4049/jimmunol.1202675. ISSN  1550-6606. PMC  3608703. PMID  23420883.
  66. ^ a b Yao, Xianglan; Gao, Meixia; Dai, Cuilian; Meyer, Katharine S.; Chen, Jichun; Keeran, Karen J.; Nugent, Gayle Z.; Qu, Xuan; Yu, Zu-Xi; Dagur, Pradeep K.; McCoy, J. Philip (December 2013). "Peptidoglycan recognition protein 1 promotes house dust mite-induced airway inflammation in mice". American Journal of Respiratory Cell and Molecular Biology. 49 (6): 902–911. doi: 10.1165/rcmb.2013-0001OC. ISSN  1535-4989. PMC  3931111. PMID  23808363.
  67. ^ Xu, Min; Wang, Zhien; Locksley, Richard M. (September 2004). "Innate immune responses in peptidoglycan recognition protein L-deficient mice". Molecular and Cellular Biology. 24 (18): 7949–7957. doi: 10.1128/MCB.24.18.7949-7957.2004. ISSN  0270-7306. PMC  515053. PMID  15340057.
  68. ^ a b Li, Xinna; Wang, Shiyong; Wang, Haitao; Gupta, Dipika (2006-07-28). "Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors". The Journal of Biological Chemistry. 281 (30): 20738–20748. doi: 10.1074/jbc.M601017200. ISSN  0021-9258. PMID  16714290. S2CID  22076229.
  69. ^ Hoijer, M. A.; Melief, M. J.; Keck, W.; Hazenberg, M. P. (1996-02-09). "Purification and characterization of N-acetylmuramyl-L-alanine amidase from human plasma using monoclonal antibodies". Biochimica et Biophysica Acta (BBA) - General Subjects. 1289 (1): 57–64. doi: 10.1016/0304-4165(95)00136-0. hdl: 1765/62308. ISSN  0006-3002. PMID  8605233.
  70. ^ Wang, Haitao; Gupta, Dipika; Li, Xinna; Dziarski, Roman (November 2005). "Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway". Infection and Immunity. 73 (11): 7216–7225. doi: 10.1128/IAI.73.11.7216-7225.2005. ISSN  0019-9567. PMC  1273900. PMID  16239516.
  71. ^ a b Uehara, A.; Sugawara, Y.; Kurata, S.; Fujimoto, Y.; Fukase, K.; Kusumoto, S.; Satta, Y.; Sasano, T.; Sugawara, S.; Takada, H. (May 2005). "Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells". Cellular Microbiology. 7 (5): 675–686. doi: 10.1111/j.1462-5822.2004.00500.x. ISSN  1462-5814. PMID  15839897. S2CID  20544993.
  72. ^ a b Duerr, C. U.; Salzman, N. H.; Dupont, A.; Szabo, A.; Normark, B. H.; Normark, S.; Locksley, R. M.; Mellroth, P.; Hornef, M. W. (May 2011). "Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes". Mucosal Immunology. 4 (3): 325–334. doi: 10.1038/mi.2010.71. ISSN  1935-3456. PMID  20980996. S2CID  10298644.
  73. ^ a b Lee, Jooeun; Geddes, Kaoru; Streutker, Catherine; Philpott, Dana J.; Girardin, Stephen E. (August 2012). "Role of mouse peptidoglycan recognition protein PGLYRP2 in the innate immune response to Salmonella enterica serovar Typhimurium infection in vivo". Infection and Immunity. 80 (8): 2645–2654. doi: 10.1128/IAI.00168-12. ISSN  1098-5522. PMC  3434585. PMID  22615249.
  74. ^ a b Sang, Yongming; Ramanathan, Balaji; Ross, Christopher R.; Blecha, Frank (November 2005). "Gene silencing and overexpression of porcine peptidoglycan recognition protein long isoforms: involvement in beta-defensin-1 expression". Infection and Immunity. 73 (11): 7133–7141. doi: 10.1128/IAI.73.11.7133-7141.2005. ISSN  0019-9567. PMC  1273832. PMID  16239507.
  75. ^ Mathur, Punam; Murray, Beth; Crowell, Thomas; Gardner, Humphrey; Allaire, Normand; Hsu, Yen-Ming; Thill, Greg; Carulli, John P. (June 2004). "Murine peptidoglycan recognition proteins PglyrpIalpha and PglyrpIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues". Genomics. 83 (6): 1151–1163. doi: 10.1016/j.ygeno.2004.01.003. ISSN  0888-7543. PMID  15177568.
  76. ^ a b c Saha, Sukumar; Jing, Xuefang; Park, Shin Yong; Wang, Shiyong; Li, Xinna; Gupta, Dipika; Dziarski, Roman (2010-08-19). "Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma". Cell Host & Microbe. 8 (2): 147–162. doi: 10.1016/j.chom.2010.07.005. ISSN  1934-6069. PMC  2998413. PMID  20709292.
  77. ^ a b Arentsen, T.; Qian, Y.; Gkotzis, S.; Femenia, T.; Wang, T.; Udekwu, K.; Forssberg, H.; Diaz Heijtz, R. (February 2017). "The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior". Molecular Psychiatry. 22 (2): 257–266. doi: 10.1038/mp.2016.182. ISSN  1476-5578. PMC  5285465. PMID  27843150.
  78. ^ Rehman, A.; Taishi, P.; Fang, J.; Majde, J. A.; Krueger, J. M. (2001-01-07). "The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation". Cytokine. 13 (1): 8–17. doi: 10.1006/cyto.2000.0800. ISSN  1043-4666. PMID  11145837.
  79. ^ Lang, Ming-Fei; Schneider, Armin; Krüger, Carola; Schmid, Roland; Dziarski, Roman; Schwaninger, Markus (2008-01-10). "Peptidoglycan recognition protein-S (PGRP-S) is upregulated by NF-kappaB". Neuroscience Letters. 430 (2): 138–141. doi: 10.1016/j.neulet.2007.10.027. ISSN  0304-3940. PMID  18035491. S2CID  54406942.
  80. ^ a b c Wang, Minhui; Liu, Li-Hui; Wang, Shiyong; Li, Xinna; Lu, Xiaofeng; Gupta, Dipika; Dziarski, Roman (2007-03-01). "Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides". Journal of Immunology. 178 (5): 3116–3125. doi: 10.4049/jimmunol.178.5.3116. ISSN  0022-1767. PMID  17312159. S2CID  22160694.
  81. ^ a b c Kashyap, Des Raj; Wang, Minhui; Liu, Li-Hui; Boons, Geert-Jan; Gupta, Dipika; Dziarski, Roman (June 2011). "Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems". Nature Medicine. 17 (6): 676–683. doi: 10.1038/nm.2357. ISSN  1546-170X. PMC  3176504. PMID  21602801.
  82. ^ Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili (July 2016). "Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity". Infection and Immunity. 84 (7): 2124–2130. doi: 10.1128/IAI.01495-15. ISSN  1098-5522. PMC  4936355. PMID  27160295.
  83. ^ a b Kashyap, Des Raj; Rompca, Annemarie; Gaballa, Ahmed; Helmann, John D.; Chan, Jefferson; Chang, Christopher J.; Hozo, Iztok; Gupta, Dipika; Dziarski, Roman (July 2014). "Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress". PLOS Pathogens. 10 (7): e1004280. doi: 10.1371/journal.ppat.1004280. ISSN  1553-7374. PMC  4102600. PMID  25032698.
  84. ^ a b Kashyap, Des R.; Kuzma, Marcin; Kowalczyk, Dominik A.; Gupta, Dipika; Dziarski, Roman (September 2017). "Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism". Molecular Microbiology. 105 (5): 755–776. doi: 10.1111/mmi.13733. ISSN  1365-2958. PMC  5570643. PMID  28621879.
  85. ^ a b Dziarski, Roman; Gupta, Dipika (February 2018). "How innate immunity proteins kill bacteria and why they are not prone to resistance". Current Genetics. 64 (1): 125–129. doi: 10.1007/s00294-017-0737-0. ISSN  1432-0983. PMC  5777906. PMID  28840318.
  86. ^ a b Kashyap, Des R.; Kowalczyk, Dominik A.; Shan, Yue; Yang, Chun-Kai; Gupta, Dipika; Dziarski, Roman (6 February 2020). "Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli". Scientific Reports. 10 (1): 1993. Bibcode: 2020NatSR..10.1993K. doi: 10.1038/s41598-020-58302-1. ISSN  2045-2322. PMC  7005000. PMID  32029761.
  87. ^ a b c Gupta, Akash; Arora, Gunjan; Rosen, Connor E.; Kloos, Zachary; Cao, Yongguo; Cerny, Jiri; Sajid, Andaleeb; Hoornstra, Dieuwertje; Golovchenko, Maryna; Rudenko, Natalie; Munderloh, Ulrike; Hovius, Joppe W.; Booth, Carmen J.; Jacobs-Wagner, Christine; Palm, Noah W. (2020-11-11). Coburn, Jenifer (ed.). "A human secretome library screen reveals a role for Peptidoglycan Recognition Protein 1 in Lyme borreliosis". PLOS Pathogens. 16 (11): e1009030. doi: 10.1371/journal.ppat.1009030. ISSN  1553-7374. PMC  7657531. PMID  33175909.
  88. ^ Liu, C.; Gelius, E.; Liu, G.; Steiner, H.; Dziarski, R. (2000-08-11). "Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth". The Journal of Biological Chemistry. 275 (32): 24490–24499. doi: 10.1074/jbc.M001239200. ISSN  0021-9258. PMID  10827080. S2CID  24226481.
  89. ^ Tydell, C. Chace; Yuan, Jun; Tran, Patti; Selsted, Michael E. (2006-01-15). "Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties". Journal of Immunology. 176 (2): 1154–1162. doi: 10.4049/jimmunol.176.2.1154. ISSN  0022-1767. PMID  16394004. S2CID  11173657.
  90. ^ Yang, Chun-Kai; Kashyap, Des R.; Kowalczyk, Dominik A.; Rudner, David Z.; Wang, Xindan; Gupta, Dipika; Dziarski, Roman (2021-01-08). "Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli". Scientific Reports. 11 (1): 64. doi: 10.1038/s41598-020-79811-z. ISSN  2045-2322. PMC  7794252. PMID  33420211.
  91. ^ Hoijer, M. A.; Melief, M. J.; Debets, R.; Hazenberg, M. P. (December 1997). "Inflammatory properties of peptidoglycan are decreased after degradation by human N-acetylmuramyl-L-alanine amidase". European Cytokine Network. 8 (4): 375–381. ISSN  1148-5493. PMID  9459617.
  92. ^ Dziarski, Roman; Kashyap, Des Raj; Gupta, Dipika (June 2012). "Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation". Microbial Drug Resistance (Larchmont, N.Y.). 18 (3): 280–285. doi: 10.1089/mdr.2012.0002. ISSN  1931-8448. PMC  3412580. PMID  22432705.
  93. ^ Osanai, Arihiro; Sashinami, Hiroshi; Asano, Krisana; Li, Sheng-Jun; Hu, Dong-Liang; Nakane, Akio (February 2011). "Mouse peptidoglycan recognition protein PGLYRP-1 plays a role in the host innate immune response against Listeria monocytogenes infection". Infection and Immunity. 79 (2): 858–866. doi: 10.1128/IAI.00466-10. ISSN  1098-5522. PMC  3028829. PMID  21134971.
  94. ^ a b Gowda, Ranjita N.; Redfern, Rachel; Frikeche, Jihane; Pinglay, Sudarshan; Foster, James William; Lema, Carolina; Cope, Leslie; Chakravarti, Shukti (2015). "Functions of Peptidoglycan Recognition Proteins (Pglyrps) at the Ocular Surface: Bacterial Keratitis in Gene-Targeted Mice Deficient in Pglyrp-2, -3 and -4". PLOS ONE. 10 (9): e0137129. Bibcode: 2015PLoSO..1037129G. doi: 10.1371/journal.pone.0137129. ISSN  1932-6203. PMC  4558058. PMID  26332373.
  95. ^ a b Dabrowski, Alexander N.; Conrad, Claudia; Behrendt, Ulrike; Shrivastav, Anshu; Baal, Nelli; Wienhold, Sandra M.; Hackstein, Holger; N'Guessan, Philippe D.; Aly, Sahar; Reppe, Katrin; Suttorp, Norbert (2019). "Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection". Frontiers in Microbiology. 10: 199. doi: 10.3389/fmicb.2019.00199. ISSN  1664-302X. PMC  6389715. PMID  30837960.
  96. ^ a b c Dabrowski, Alexander N.; Shrivastav, Anshu; Conrad, Claudia; Komma, Kassandra; Weigel, Markus; Dietert, Kristina; Gruber, Achim D.; Bertrams, Wilhelm; Wilhelm, Jochen; Schmeck, Bernd; Reppe, Katrin (2019). "Peptidoglycan Recognition Protein 4 Limits Bacterial Clearance and Inflammation in Lungs by Control of the Gut Microbiota". Frontiers in Immunology. 10: 2106. doi: 10.3389/fimmu.2019.02106. ISSN  1664-3224. PMC  6763742. PMID  31616404.
  97. ^ a b Dziarski, Roman; Park, Shin Yong; Kashyap, Des Raj; Dowd, Scot E.; Gupta, Dipika (2016). "Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice". PLOS ONE. 11 (1): e0146162. Bibcode: 2016PLoSO..1146162D. doi: 10.1371/journal.pone.0146162. ISSN  1932-6203. PMC  4699708. PMID  26727498.
  98. ^ a b c Banskar, Sunil; Detzner, Ashley A.; Juarez-Rodriguez, Maria D.; Hozo, Iztok; Gupta, Dipika; Dziarski, Roman (15 December 2019). "The Pglyrp1-Regulated Microbiome Enhances Experimental Allergic Asthma". Journal of Immunology. 203 (12): 3113–3125. doi: 10.4049/jimmunol.1900711. ISSN  1550-6606. PMID  31704882. S2CID  207942798.
  99. ^ Laman, Jon D.; 't Hart, Bert A.; Power, Christopher; Dziarski, Roman (July 2020). "Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation". Trends in Molecular Medicine. 26 (7): 670–682. doi: 10.1016/j.molmed.2019.11.006. ISSN  1471-499X. PMID  32589935. S2CID  211835568.
  100. ^ Jing, Xuefang; Zulfiqar, Fareeha; Park, Shin Yong; Núñez, Gabriel; Dziarski, Roman; Gupta, Dipika (2014-09-15). "Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis". Journal of Immunology. 193 (6): 3055–3069. doi: 10.4049/jimmunol.1301548. ISSN  1550-6606. PMC  4157132. PMID  25114103.
  101. ^ Zenhom, Marwa; Hyder, Ayman; de Vrese, Michael; Heller, Knut J.; Roeder, Thomas; Schrezenmeir, Jürgen (April 2012). "Peptidoglycan recognition protein 3 (PglyRP3) has an anti-inflammatory role in intestinal epithelial cells". Immunobiology. 217 (4): 412–419. doi: 10.1016/j.imbio.2011.10.013. ISSN  1878-3279. PMID  22099350.
  102. ^ a b Park, Shin Yong; Gupta, Dipika; Kim, Chang H.; Dziarski, Roman (2011). "Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells". PLOS ONE. 6 (9): e24961. Bibcode: 2011PLoSO...624961P. doi: 10.1371/journal.pone.0024961. ISSN  1932-6203. PMC  3174980. PMID  21949809.
  103. ^ Skerry, Ciaran; Goldman, William E.; Carbonetti, Nicholas H. (February 2019). "Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation". Infection and Immunity. 87 (2). doi: 10.1128/IAI.00601-18. ISSN  1098-5522. PMC  6346131. PMID  30510103.
  104. ^ a b Park, Shin Yong; Gupta, Dipika; Hurwich, Risa; Kim, Chang H.; Dziarski, Roman (2011-12-01). "Peptidoglycan recognition protein Pglyrp2 protects mice from psoriasis-like skin inflammation by promoting regulatory T cells and limiting Th17 responses". Journal of Immunology. 187 (11): 5813–5823. doi: 10.4049/jimmunol.1101068. ISSN  1550-6606. PMC  3221838. PMID  22048773.
  105. ^ Saha, Sukumar; Qi, Jin; Wang, Shiyong; Wang, Minhui; Li, Xinna; Kim, Yun-Gi; Núñez, Gabriel; Gupta, Dipika; Dziarski, Roman (2009-02-19). "PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation". Cell Host & Microbe. 5 (2): 137–150. doi: 10.1016/j.chom.2008.12.010. ISSN  1934-6069. PMC  2671207. PMID  19218085.
  106. ^ Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys (January 2018). "Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice". Brain, Behavior, and Immunity. 67: 345–354. doi: 10.1016/j.bbi.2017.09.014. ISSN  1090-2139. PMID  28951252. S2CID  27790787.
  107. ^ a b c Schnell, Alexandra; Huang, Linglin; Regan, Brianna M. L.; Singh, Vasundhara; Vonficht, Dominik; Bollhagen, Alina; Wang, Mona; Hou, Yu; Bod, Lloyd; Sobel, Raymond A.; Chihara, Norio; Madi, Asaf; Anderson, Ana C.; Regev, Aviv; Kuchroo, Vijay K. (2023-10-12). "Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation". Nature Immunology: 1–13. doi: 10.1038/s41590-023-01645-4. ISSN  1529-2908. PMC  10864036. PMID  37828379. S2CID  263963953.
  108. ^ Read, Christine B.; Kuijper, Joseph L.; Hjorth, Siv A.; Heipel, Mark D.; Tang, Xiaoting; Fleetwood, Andrew J.; Dantzler, Jeffrey L.; Grell, Susanne N.; Kastrup, Jesper; Wang, Camilla; Brandt, Cameron S. (2015-02-15). "Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1". Journal of Immunology. 194 (4): 1417–1421. doi: 10.4049/jimmunol.1402303. ISSN  1550-6606. PMC  4319313. PMID  25595774.
  109. ^ Sashchenko, Lidia P.; Dukhanina, Elena A.; Yashin, Denis V.; Shatalov, Yurii V.; Romanova, Elena A.; Korobko, Elena V.; Demin, Alexander V.; Lukyanova, Tamara I.; Kabanova, Olga D.; Khaidukov, Sergei V.; Kiselev, Sergei L. (2004-01-16). "Peptidoglycan recognition protein tag7 forms a cytotoxic complex with heat shock protein 70 in solution and in lymphocytes". The Journal of Biological Chemistry. 279 (3): 2117–2124. doi: 10.1074/jbc.M307513200. ISSN  0021-9258. PMID  14585845. S2CID  23485070.
  110. ^ Sashchenko, Lidia P.; Dukhanina, Elena A.; Shatalov, Yury V.; Yashin, Denis V.; Lukyanova, Tamara I.; Kabanova, Olga D.; Romanova, Elena A.; Khaidukov, Sergei V.; Galkin, Alexander V.; Gnuchev, Nikolai V.; Georgiev, Georgii P. (2007-09-15). "Cytotoxic T lymphocytes carrying a pattern recognition protein Tag7 can detect evasive, HLA-negative but Hsp70-exposing tumor cells, thereby ensuring FasL/Fas-mediated contact killing". Blood. 110 (6): 1997–2004. doi: 10.1182/blood-2006-12-064444. ISSN  0006-4971. PMID  17551095. S2CID  14869208.
  111. ^ Dukhanina, Elena A.; Kabanova, Olga D.; Lukyanova, Tamara I.; Shatalov, Yury V.; Yashin, Denis V.; Romanova, Elena A.; Gnuchev, Nikolai V.; Galkin, Alexander V.; Georgiev, Georgii P.; Sashchenko, Lidia P. (2009-08-18). "Opposite roles of metastasin (S100A4) in two potentially tumoricidal mechanisms involving human lymphocyte protein Tag7 and Hsp70". Proceedings of the National Academy of Sciences of the United States of America. 106 (33): 13963–13967. Bibcode: 2009PNAS..10613963D. doi: 10.1073/pnas.0900116106. ISSN  1091-6490. PMC  2729003. PMID  19666596.
  112. ^ Yashin, Denis V.; Dukhanina, Elena A.; Kabanova, Olga D.; Romanova, Elena A.; Lukyanova, Tamara I.; Tonevitskii, Alexsander G.; Raynes, Deborah A.; Gnuchev, Nikolai V.; Guerriero, Vince; Georgiev, Georgii P.; Sashchenko, Lidia P. (2011-03-25). "The heat shock-binding protein (HspBP1) protects cells against the cytotoxic action of the Tag7-Hsp70 complex". The Journal of Biological Chemistry. 286 (12): 10258–10264. doi: 10.1074/jbc.M110.163436. ISSN  1083-351X. PMC  3060480. PMID  21247889.
  113. ^ a b Yashin, Denis V.; Ivanova, Olga K.; Soshnikova, Natalia V.; Sheludchenkov, Anton A.; Romanova, Elena A.; Dukhanina, Elena A.; Tonevitsky, Alexander G.; Gnuchev, Nikolai V.; Gabibov, Alexander G.; Georgiev, Georgii P.; Sashchenko, Lidia P. (2015-08-28). "Tag7 (PGLYRP1) in Complex with Hsp70 Induces Alternative Cytotoxic Processes in Tumor Cells via TNFR1 Receptor". Journal of Biological Chemistry. 290 (35): 21724–21731. doi: 10.1074/jbc.M115.639732. ISSN  0021-9258. PMC  4571894. PMID  26183779.
  114. ^ Yashin, Denis V.; Romanova, Elena A.; Ivanova, Olga K.; Sashchenko, Lidia P. (April 2016). "The Tag7-Hsp70 cytotoxic complex induces tumor cell necroptosis via permeabilisation of lysosomes and mitochondria". Biochimie. 123: 32–36. doi: 10.1016/j.biochi.2016.01.007. ISSN  1638-6183. PMID  26796882.
  115. ^ Romanova, Elena A.; Sharapova, Tatiana N.; Telegin, Georgii B.; Minakov, Alexei N.; Chernov, Alexander S.; Ivanova, Olga K.; Bychkov, Maxim L.; Sashchenko, Lidia P.; Yashin, Denis V. (20 February 2020). "A 12-mer Peptide of Tag7 (PGLYRP1) Forms a Cytotoxic Complex with Hsp70 and Inhibits TNF-Alpha Induced Cell Death". Cells. 9 (2): 488. doi: 10.3390/cells9020488. ISSN  2073-4409. PMC  7072780. PMID  32093269.
  116. ^ a b Sharapova, Tatiana N.; Romanova, Elena A.; Chernov, Aleksandr S.; Minakov, Alexey N.; Kazakov, Vitaly A.; Kudriaeva, Anna A.; Belogurov, Alexey A.; Ivanova, Olga K.; Gabibov, Alexander G.; Telegin, Georgii B.; Yashin, Denis V.; Sashchenko, Lidia P. (2021-10-18). "Protein PGLYRP1/Tag7 Peptides Decrease the Proinflammatory Response in Human Blood Cells and Mouse Model of Diffuse Alveolar Damage of Lung through Blockage of the TREM-1 and TNFR1 Receptors". International Journal of Molecular Sciences. 22 (20): 11213. doi: 10.3390/ijms222011213. ISSN  1422-0067. PMC  8538247. PMID  34681871.
  117. ^ Telegin, Georgii B.; Chernov, Aleksandr S.; Kazakov, Vitaly A.; Romanova, Elena A.; Sharapova, Tatiana N.; Yashin, Denis V.; Gabibov, Alexander G.; Sashchenko, Lidia P. (2021-06-07). "A 8-mer Peptide of PGLYRP1/Tag7 Innate Immunity Protein Binds to TNFR1 Receptor and Inhibits TNFα-Induced Cytotoxic Effect and Inflammation". Frontiers in Immunology. 12. doi: 10.3389/fimmu.2021.622471. ISSN  1664-3224. PMC  8215708. PMID  34163464.
  118. ^ Zulfiqar, Fareeha; Hozo, Iztok; Rangarajan, Sneha; Mariuzza, Roy A.; Dziarski, Roman; Gupta, Dipika (2013). "Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease". PLOS ONE. 8 (6): e67393. Bibcode: 2013PLoSO...867393Z. doi: 10.1371/journal.pone.0067393. ISSN  1932-6203. PMC  3686734. PMID  23840689.
  119. ^ Nkya, Siana; Mwita, Liberata; Mgaya, Josephine; Kumburu, Happiness; van Zwetselaar, Marco; Menzel, Stephan; Mazandu, Gaston Kuzamunu; Sangeda, Raphael; Chimusa, Emile; Makani, Julie (5 June 2020). "Identifying genetic variants and pathways associated with extreme levels of fetal hemoglobin in sickle cell disease in Tanzania". BMC Medical Genetics. 21 (1): 125. doi: 10.1186/s12881-020-01059-1. ISSN  1471-2350. PMC  7275552. PMID  32503527.
  120. ^ Ng, David; Hu, Nan; Hu, Ying; Wang, Chaoyu; Giffen, Carol; Tang, Ze-Zhong; Han, Xiao-You; Yang, Howard H.; Lee, Maxwell P.; Goldstein, Alisa M.; Taylor, Philip R. (2008-10-01). "Replication of a genome-wide case-control study of esophageal squamous cell carcinoma". International Journal of Cancer. 123 (7): 1610–1615. doi: 10.1002/ijc.23682. ISSN  1097-0215. PMC  2552411. PMID  18649358.
  121. ^ Goldman, Samuel M.; Kamel, Freya; Ross, G. Webster; Jewell, Sarah A.; Marras, Connie; Hoppin, Jane A.; Umbach, David M.; Bhudhikanok, Grace S.; Meng, Cheryl; Korell, Monica; Comyns, Kathleen (August 2014). "Peptidoglycan recognition protein genes and risk of Parkinson's disease". Movement Disorders. 29 (9): 1171–1180. doi: 10.1002/mds.25895. ISSN  1531-8257. PMC  4777298. PMID  24838182.
  122. ^ Gorecki, Anastazja M.; Bakeberg, Megan C.; Theunissen, Frances; Kenna, Jade E.; Hoes, Madison E.; Pfaff, Abigail L.; Akkari, P. Anthony; Dunlop, Sarah A.; Kõks, Sulev; Mastaglia, Frank L.; Anderton, Ryan S. (2020-11-17). "Single Nucleotide Polymorphisms Associated With Gut Homeostasis Influence Risk and Age-at-Onset of Parkinson's Disease". Frontiers in Aging Neuroscience. 12. doi: 10.3389/fnagi.2020.603849. ISSN  1663-4365. PMC  7718032. PMID  33328979.
  123. ^ Luan, Mengting; Jin, Jianing; Wang, Ying; Li, Xiaoyuan; Xie, Anmu (April 2022). "Association of PGLYRP2 gene polymorphism and sporadic Parkinson's disease in northern Chinese Han population". Neuroscience Letters. 775: 136547. doi: 10.1016/j.neulet.2022.136547. PMID  35218888. S2CID  247028433.
  124. ^ Sun, Chao; Mathur, Punam; Dupuis, Josée; Tizard, Rich; Ticho, Barry; Crowell, Tom; Gardner, Humphrey; Bowcock, Anne M.; Carulli, John (March 2006). "Peptidoglycan recognition proteins Pglyrp3 and Pglyrp4 are encoded from the epidermal differentiation complex and are candidate genes for the Psors4 locus on chromosome 1q21". Human Genetics. 119 (1–2): 113–125. doi: 10.1007/s00439-005-0115-8. ISSN  0340-6717. PMID  16362825. S2CID  31486449.
  125. ^ Kainu, Kati; Kivinen, Katja; Zucchelli, Marco; Suomela, Sari; Kere, Juha; Inerot, Annica; Baker, Barbara S.; Powles, Anne V.; Fry, Lionel; Samuelsson, Lena; Saarialho-Kere, Ulpu (February 2009). "Association of psoriasis to PGLYRP and SPRR genes at PSORS4 locus on 1q shows heterogeneity between Finnish, Swedish and Irish families". Experimental Dermatology. 18 (2): 109–115. doi: 10.1111/j.1600-0625.2008.00769.x. ISSN  1600-0625. PMID  18643845. S2CID  5771478.
  126. ^ Igartua, Catherine; Davenport, Emily R.; Gilad, Yoav; Nicolae, Dan L.; Pinto, Jayant; Ober, Carole (1 February 2017). "Host genetic variation in mucosal immunity pathways influences the upper airway microbiome". Microbiome. 5 (1): 16. doi: 10.1186/s40168-016-0227-5. ISSN  2049-2618. PMC  5286564. PMID  28143570.
  127. ^ Zhang, Lei; Luo, Min; Yang, Hongying; Zhu, Shaoyan; Cheng, Xianliang; Qing, Chen (2019-02-20). "Next-generation sequencing-based genomic profiling analysis reveals novel mutations for clinical diagnosis in Chinese primary epithelial ovarian cancer patients". Journal of Ovarian Research. 12 (1): 19. doi: 10.1186/s13048-019-0494-4. ISSN  1757-2215. PMC  6381667. PMID  30786925.
  128. ^ Rohatgi, Anand; Ayers, Colby R.; Khera, Amit; McGuire, Darren K.; Das, Sandeep R.; Matulevicius, Susan; Timaran, Carlos H.; Rosero, Eric B.; de Lemos, James A. (April 2009). "The association between peptidoglycan recognition protein-1 and coronary and peripheral atherosclerosis: Observations from the Dallas Heart Study". Atherosclerosis. 203 (2): 569–575. doi: 10.1016/j.atherosclerosis.2008.07.015. ISSN  1879-1484. PMID  18774573.
  129. ^ Brownell, Nicholas K.; Khera, Amit; de Lemos, James A.; Ayers, Colby R.; Rohatgi, Anand (17 May 2016). "Association Between Peptidoglycan Recognition Protein-1 and Incident Atherosclerotic Cardiovascular Disease Events: The Dallas Heart Study". Journal of the American College of Cardiology. 67 (19): 2310–2312. doi: 10.1016/j.jacc.2016.02.063. ISSN  1558-3597. PMID  27173041.
  130. ^ a b Klimczak-Tomaniak, Dominika; Bouwens, Elke; Schuurman, Anne-Sophie; Akkerhuis, K. Martijn; Constantinescu, Alina; Brugts, Jasper; Westenbrink, B. Daan; van Ramshorst, Jan; Germans, Tjeerd; Pączek, Leszek; Umans, Victor (June 2020). "Temporal patterns of macrophage- and neutrophil-related markers are associated with clinical outcome in heart failure patients". ESC Heart Failure. 7 (3): 1190–1200. doi: 10.1002/ehf2.12678. ISSN  2055-5822. PMC  7261550. PMID  32196993.
  131. ^ Rathnayake, Nilminie; Gustafsson, Anders; Sorsa, Timo; Norhammar, Anna; Bostanci, Nagihan (September 2022). "Association of peptidoglycan recognition protein 1 to post‐myocardial infarction and periodontal inflammation: A subgroup report from the PAROKRANK (Periodontal Disease and the Relation to Myocardial Infarction) study". Journal of Periodontology. 93 (9): 1325–1335. doi: 10.1002/JPER.21-0595. ISSN  0022-3492. PMC  9796725. PMID  35344208.
  132. ^ a b Han, Yanxin; Hua, Sha; Chen, Yanjia; Yang, Wenbo; Zhao, Weilin; Huang, Fanyi; Qiu, Zeping; Yang, Chendie; Jiang, Jie; Su, Xiuxiu; Yang, Ke; Jin, Wei (May 2021). "Circulating PGLYRP1 Levels as a Potential Biomarker for Coronary Artery Disease and Heart Failure". Journal of Cardiovascular Pharmacology. 77 (5): 578–585. doi: 10.1097/FJC.0000000000000996. ISSN  0160-2446. PMID  33760799. S2CID  232356516.
  133. ^ Jin, Yao; Huang, Hui; Shu, Xinyi; Liu, Zhuhui; Lu, Lin; Dai, Yang; Wu, Zhijun (December 2021). "Peptidoglycan Recognition Protein 1 Attenuates Atherosclerosis by Suppressing Endothelial Cell Adhesion". Journal of Cardiovascular Pharmacology. 78 (4): 615–621. doi: 10.1097/FJC.0000000000001100. ISSN  0160-2446. PMID  34269701. S2CID  235962339.
  134. ^ Zhang, Junli; Cheng, Yuelei; Duan, Minmin; Qi, Nannan; Liu, Jian (May 2017). "Unveiling differentially expressed genes upon regulation of transcription factors in sepsis". 3 Biotech. 7 (1): 46. doi: 10.1007/s13205-017-0713-x. ISSN  2190-572X. PMC  5428098. PMID  28444588.
  135. ^ Molyneaux, Philip L.; Willis-Owen, Saffron A. G.; Cox, Michael J.; James, Phillip; Cowman, Steven; Loebinger, Michael; Blanchard, Andrew; Edwards, Lindsay M.; Stock, Carmel; Daccord, Cécile; Renzoni, Elisabetta A. (15 June 2017). "Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis". American Journal of Respiratory and Critical Care Medicine. 195 (12): 1640–1650. doi: 10.1164/rccm.201607-1408OC. ISSN  1535-4970. PMC  5476909. PMID  28085486.
  136. ^ Kasaian, M. T.; Lee, J.; Brennan, A.; Danto, S. I.; Black, K. E.; Fitz, L.; Dixon, A. E. (July 2018). "Proteomic analysis of serum and sputum analytes distinguishes controlled and poorly controlled asthmatics". Clinical and Experimental Allergy. 48 (7): 814–824. doi: 10.1111/cea.13151. ISSN  1365-2222. PMID  29665127. S2CID  4938216.
  137. ^ Nylund, Karita M.; Ruokonen, Hellevi; Sorsa, Timo; Heikkinen, Anna Maria; Meurman, Jukka H.; Ortiz, Fernanda; Tervahartiala, Taina; Furuholm, Jussi; Bostanci, Nagihan (January 2018). "Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease". Journal of Periodontology. 89 (1): 117–129. doi: 10.1902/jop.2017.170218. ISSN  1943-3670. PMID  28846062. S2CID  21830535.
  138. ^ Luo, Qing; Li, Xue; Zhang, Lu; Yao, Fangyi; Deng, Zhen; Qing, Cheng; Su, Rigu; Xu, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming (January 2019). "Serum PGLYRP‑1 is a highly discriminatory biomarker for the diagnosis of rheumatoid arthritis". Molecular Medicine Reports. 19 (1): 589–594. doi: 10.3892/mmr.2018.9632. ISSN  1791-3004. PMID  30431075.
  139. ^ Silbereisen, A.; Hallak, A. K.; Nascimento, G. G.; Sorsa, T.; Belibasakis, G. N.; Lopez, R.; Bostanci, N. (October 2019). "Regulation of PGLYRP1 and TREM-1 during Progression and Resolution of Gingival Inflammation". JDR Clinical and Translational Research. 4 (4): 352–359. doi: 10.1177/2380084419844937. ISSN  2380-0852. PMID  31013451. S2CID  129941967.
  140. ^ Raivisto, T.; Heikkinen, A. M.; Silbereisen, A.; Kovanen, L.; Ruokonen, H.; Tervahartiala, T.; Haukka, J.; Sorsa, T.; Bostanci, N. (October 2020). "Regulation of Salivary Peptidoglycan Recognition Protein 1 in Adolescents". JDR Clinical and Translational Research. 5 (4): 332–341. doi: 10.1177/2380084419894287. ISSN  2380-0852. PMID  31860804. S2CID  209434091.
  141. ^ Yucel, Zeynep Pinar Keles; Silbereisen, Angelika; Emingil, Gulnur; Tokgoz, Yavuz; Kose, Timur; Sorsa, Timo; Tsilingaridis, Georgios; Bostanci, Nagihan (October 2020). "Salivary biomarkers in the context of gingival inflammation in children with cystic fibrosis". Journal of Periodontology. 91 (10): 1339–1347. doi: 10.1002/JPER.19-0415. hdl: 10138/327022. ISSN  1943-3670. PMID  32100289. S2CID  211523360.
  142. ^ Karsiyaka Hendek, Meltem; Kisa, Ucler; Olgun, Ebru (January 2020). "The effect of smoking on gingival crevicular fluid peptidoglycan recognition protein-1 level following initial periodontal therapy in chronic periodontitis". Oral Diseases. 26 (1): 166–172. doi: 10.1111/odi.13207. ISSN  1601-0825. PMID  31587460. S2CID  203850763.
  143. ^ Teixeira, Mayla K. S.; Lira-Junior, Ronaldo; Lourenço, Eduardo José Veras; Telles, Daniel Moraes; Boström, Elisabeth A.; Figueredo, Carlos Marcelo; Bostanci, Nagihan (May 2020). "The modulation of the TREM-1/PGLYRP1/MMP-8 axis in peri-implant diseases". Clinical Oral Investigations. 24 (5): 1837–1844. doi: 10.1007/s00784-019-03047-z. ISSN  1436-3771. PMID  31444693. S2CID  201283050.
  144. ^ Inanc, Nevsun; Mumcu, Gonca; Can, Meryem; Yay, Meral; Silbereisen, Angelika; Manoil, Daniel; Direskeneli, Haner; Bostanci, Nagihan (2021-02-03). "Elevated serum TREM-1 is associated with periodontitis and disease activity in rheumatoid arthritis". Scientific Reports. 11 (1): 2888. Bibcode: 2021NatSR..11.2888I. doi: 10.1038/s41598-021-82335-9. ISSN  2045-2322. PMC  7859204. PMID  33536478.
  145. ^ Silbereisen, Angelika; Lira‐Junior, Ronaldo; Åkerman, Sigvard; Klinge, Björn; Boström, Elisabeth A.; Bostanci, Nagihan (November 2023). "Association of salivary TREM‐1 and PGLYRP1 inflammatory markers with non‐communicable diseases". Journal of Clinical Periodontology. 50 (11): 1467–1475. doi: 10.1111/jcpe.13858. ISSN  0303-6979. PMID  37524498. S2CID  260349050.
  146. ^ Yang, Zhanyu; Ni, Jiangdong; Kuang, Letian; Gao, Yongquan; Tao, Shibin (2020-09-11). "Identification of genes and pathways associated with subchondral bone in osteoarthritis via bioinformatic analysis". Medicine. 99 (37): e22142. doi: 10.1097/MD.0000000000022142. ISSN  1536-5964. PMC  7489699. PMID  32925767.
  147. ^ Ortiz, Fernanda; Nylund, Karita M.; Ruokonen, Hellevi; Meurman, Jukka H.; Furuholm, Jussi; Bostanci, Nagihan; Sorsa, Timo (2020-08-04). "Salivary Biomarkers of Oral Inflammation Are Associated With Cardiovascular Events and Death Among Kidney Transplant Patients". Transplantation Proceedings. 52 (10): 3231–3235. doi: 10.1016/j.transproceed.2020.07.007. ISSN  1873-2623. PMID  32768288. S2CID  225451024.
  148. ^ Soomro, Sanam; Venkateswaran, Suresh; Vanarsa, Kamala; Kharboutli, Marwa; Nidhi, Malavika; Susarla, Ramya; Zhang, Ting; Sasidharan, Prashanth; Lee, Kyung Hyun; Rosh, Joel; Markowitz, James; Pedroza, Claudia; Denson, Lee A.; Hyams, Jeffrey; Kugathasan, Subra (2021-06-28). "Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen". Nature Communications. 12 (1): 3989. Bibcode: 2021NatCo..12.3989S. doi: 10.1038/s41467-021-24235-0. ISSN  2041-1723. PMC  8239008. PMID  34183667.
  149. ^ Glickman, Jacob W.; Dubin, Celina; Renert-Yuval, Yael; Dahabreh, Dante; Kimmel, Grace W.; Auyeung, Kelsey; Estrada, Yeriel D.; Singer, Giselle; Krueger, James G.; Pavel, Ana B.; Guttman-Yassky, Emma (2020-05-04). "Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation". Journal of the American Academy of Dermatology. 84 (2): 370–380. doi: 10.1016/j.jaad.2020.04.138. ISSN  1097-6787. PMID  32376430. S2CID  218532915.
  150. ^ Yang, Shuting; Cao, Chuqing; Xie, Zhiguo; Zhou, Zhiguang (March 2020). "Analysis of potential hub genes involved in the pathogenesis of Chinese type 1 diabetic patients". Annals of Translational Medicine. 8 (6): 295. doi: 10.21037/atm.2020.02.171. ISSN  2305-5839. PMC  7186604. PMID  32355739.
  151. ^ Arenius, Ilona; Ruokonen, Hellevi; Ortiz, Fernanda; Furuholm, Jussi; Välimaa, Hannamari; Bostanci, Nagihan; Eskola, Maija; Maria Heikkinen, Anna; Meurman, Jukka H.; Sorsa, Timo; Nylund, Karita (July 2020). "The relationship between oral diseases and infectious complications in patients under dialysis". Oral Diseases. 26 (5): 1045–1052. doi: 10.1111/odi.13296. hdl: 10138/325947. ISSN  1601-0825. PMID  32026534. S2CID  211045697.
  152. ^ Guo, Chao; Li, Zhenling (2019-12-05). "Bioinformatics Analysis of Key Genes and Pathways Associated with Thrombosis in Essential Thrombocythemia". Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 25: 9262–9271. doi: 10.12659/MSM.918719. ISSN  1643-3750. PMC  6911306. PMID  31801935.
  153. ^ Grande, Giuseppe; Vincenzoni, Federica; Milardi, Domenico; Pompa, Giuseppina; Ricciardi, Domenico; Fruscella, Erika; Mancini, Francesca; Pontecorvi, Alfredo; Castagnola, Massimo; Marana, Riccardo (2017). "Cervical mucus proteome in endometriosis". Clinical Proteomics. 14: 7. doi: 10.1186/s12014-017-9142-4. ISSN  1542-6416. PMC  5290661. PMID  28174513.
  154. ^ Turturice, Benjamin A; Theorell, Juliana; Koenig, Mary Dawn; Tussing-Humphreys, Lisa; Gold, Diane R; Litonjua, Augusto A; Oken, Emily; Rifas-Shiman, Sheryl L; Perkins, David L; Finn, Patricia W (2021-02-10). "Perinatal granulopoiesis and risk of pediatric asthma". eLife. 10. doi: 10.7554/eLife.63745. ISSN  2050-084X. PMC  7889076. PMID  33565964.
  155. ^ Li, Hui; Meng, Defang; Jia, Jieting; Wei, Hua (December 2021). "PGLYRP2 as a novel biomarker for the activity and lipid metabolism of systemic lupus erythematosus". Lipids in Health and Disease. 20 (1): 95. doi: 10.1186/s12944-021-01515-8. ISSN  1476-511X. PMC  8404349. PMID  34461924.
  156. ^ Huang, Fei; Liu, Xu; Cheng, Yongjing; Sun, Xiaolin; Li, Yingni; Zhao, Jing; Cao, Di; Wu, Qin; Pan, Xiaoli; Deng, Haiteng; Tian, Mei; Li, Zhanguo (2021-08-31). "Antibody to peptidoglycan recognition protein (PGLYRP)-2 as a novel biomarker in rheumatoid arthritis". Clinical and Experimental Rheumatology. 39 (5): 988–994. doi: 10.55563/clinexprheumatol/vlvlqu. ISSN  1593-098X. PMID  33427621. S2CID  231575423.
  157. ^ Achkar, Jacqueline M.; Cortes, Laetitia; Croteau, Pascal; Yanofsky, Corey; Mentinova, Marija; Rajotte, Isabelle; Schirm, Michael; Zhou, Yiyong; Junqueira-Kipnis, Ana Paula; Kasprowicz, Victoria O.; Larsen, Michelle (September 2015). "Host Protein Biomarkers Identify Active Tuberculosis in HIV Uninfected and Co-infected Individuals". eBioMedicine. 2 (9): 1160–1168. doi: 10.1016/j.ebiom.2015.07.039. ISSN  2352-3964. PMC  4588417. PMID  26501113.
  158. ^ Chen, Jing; Han, Yu‐Shuai; Yi, Wen‐Jing; Huang, Huai; Li, Zhi‐Bin; Shi, Li‐Ying; Wei, Li‐Liang; Yu, Yi; Jiang, Ting‐Ting; Li, Ji‐Cheng (November 2020). "Serum sCD14, PGLYRP2 and FGA as potential biomarkers for multidrug‐resistant tuberculosis based on data‐independent acquisition and targeted proteomics". Journal of Cellular and Molecular Medicine. 24 (21): 12537–12549. doi: 10.1111/jcmm.15796. ISSN  1582-1838. PMC  7686995. PMID  32967043.
  159. ^ Zhou, Yong; Qin, Shizhen; Sun, Mingjuan; Tang, Li; Yan, Xiaowei; Kim, Taek-Kyun; Caballero, Juan; Glusman, Gustavo; Brunkow, Mary E.; Soloski, Mark J.; Rebman, Alison W. (3 January 2020). "Measurement of Organ-Specific and Acute-Phase Blood Protein Levels in Early Lyme Disease". Journal of Proteome Research. 19 (1): 346–359. doi: 10.1021/acs.jproteome.9b00569. ISSN  1535-3907. PMC  7981273. PMID  31618575.
  160. ^ Yang, Zongyi; Feng, Jia; Xiao, Li; Chen, Xi; Yao, Yuanfei; Li, Yiqun; Tang, Yu; Zhang, Shuai; Lu, Min; Qian, Yu; Wu, Hongjin (May 2020). "Tumor-Derived Peptidoglycan Recognition Protein 2 Predicts Survival and Antitumor Immune Responses in Hepatocellular Carcinoma". Hepatology. 71 (5): 1626–1642. doi: 10.1002/hep.30924. ISSN  1527-3350. PMC  7318564. PMID  31479523.
  161. ^ Das, Apabrita Ayan; Choudhury, Kamalika Roy; Jagadeeshaprasad, M. G.; Kulkarni, Mahesh J.; Mondal, Prakash Chandra; Bandyopadhyay, Arun (2020-06-30). "Proteomic analysis detects deregulated reverse cholesterol transport in human subjects with ST-segment elevation myocardial infarction". Journal of Proteomics. 222: 103796. doi: 10.1016/j.jprot.2020.103796. ISSN  1876-7737. PMID  32376501. S2CID  218532507.
  162. ^ Tsuchiya, M.; Asahi, N.; Suzuoki, F.; Ashida, M.; Matsuura, S. (September 1996). "Detection of peptidoglycan and beta-glucan with silkworm larvae plasma test". FEMS Immunology and Medical Microbiology. 15 (2–3): 129–134. doi: 10.1111/j.1574-695X.1996.tb00063.x. ISSN  0928-8244. PMID  8880138.
  163. ^ Kobayashi, T.; Tani, T.; Yokota, T.; Kodama, M. (May 2000). "Detection of peptidoglycan in human plasma using the silkworm larvae plasma test". FEMS Immunology and Medical Microbiology. 28 (1): 49–53. doi: 10.1111/j.1574-695X.2000.tb01456.x. ISSN  0928-8244. PMID  10767607.

Further reading