From Wikipedia, the free encyclopedia

PANoptosis is a prominent unique, innate immune, inflammatory, and lytic cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through multiprotein PANoptosome complexes. [1] [2] The assembly of the PANoptosome cell death complex occurs in response to germline-encoded pattern-recognition receptors (PRRs) sensing pathogens, including bacterial, viral, and fungal infections, as well as pathogen-associated molecular patterns, damage-associated molecular patterns, and cytokines that are released during infections, inflammatory conditions, and cancer. [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [1] Several PANoptosome complexes, such as the ZBP1-, AIM2-, RIPK1-, NLRC5- and NLRP12-PANoptosomes, have been characterized so far. [1] [17] [18] [19] [20] [21] [22] [23]

Emerging genetic, molecular, and biochemical studies have identified extensive crosstalk among the molecular components across various cell death pathways in response to a variety of pathogens and innate immune triggers. [3] [4] Historically, inflammatory caspase-mediated pyroptosis  and RIPK-driven necroptosis were described as two major inflammatory cell death pathways. While the PANoptosis pathway has some molecular components in common with pyroptosis and necroptosis, as well as with the non-lytic apoptosis pathway, these mechanisms are separate processes that are associated with distinct triggers, protein complexes, and execution pathways. [2] Inflammasome-dependent pyroptosis involves inflammatory caspases, including caspase-1 and caspase-11 in mice, and caspases-1, -4, and - 5 in humans, and is executed by gasdermin D. [24] [25] [26] [27] [28] [29] [30] In contrast, necroptosis occurs via RIPK1/3-mediated MLKL activation, which is downstream of caspase-8 inhibition. [31] [32] [33] [34] On the other hand, PANoptosis is [TDK1] driven by caspases and RIPKs and is executed by gasdermins, MLKL, and potentially other yet to be identified molecules cleaved by caspases. [35] [36] [37] [38] [39] [40] [19] [21] Moreover, caspase-8 is essential for cell death in PANoptosis [41] [42] but needs to be inactivated or inhibited to induce necroptosis. [43] [44]

PANoptosis has now been identified in a variety of infections, including viral ( influenza A virus, herpes simplex virus 1 (HSV1), coronavirus), bacterial ( Yersinia pseudotuberculosis, Francisella novicida), and fungal ( Candida albicans, Aspergillus fumigatus). PANoptosis has also been implicated in inflammatory diseases, neurological diseases, and cancer. [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] Activation of PANoptosis can clear infected cells for host defense, and it has shown preclinical promise as an anti-cancer strategy. For example, PANoptosis is important for host defense during influenza infection through the ZBP1-PANoptosome and during Francisella and HSV1 infections through the AIM2-PANoptosome. [5] [7] [17] [19] Additionally, treatment of cancer cells with the PANoptosis-inducing agents TNF and IFN-γ [55] [6] can reduce tumor size in preclinical models. [56] The combination of the nuclear export inhibitor selinexor and IFN can also cause PANoptosis and regress tumors in preclinical models. [3] [57] However, excess activation of PANoptosis can be associated with inflammation, inflammatory disease, and cytokine storm syndromes. [6] [11] [58] [21] [1] Treatments that block TNF and IFN-γ to prevent PANoptosis have provided therapeutic benefit in preclinical models of cytokine storm syndromes, including cytokine shock, SARS-CoV-2 infection, sepsis, and hemophagocytic lymphohistiocytosis, suggesting the therapeutic potential of modulating this pathway. [6] [59] Further studies with beta-coronaviruses have shown that IFN can induce ZBP1-mediated PANoptosis during SARS-CoV-2 infection, thereby limiting the efficacy of IFN treatment during infection and resulting in morbidity and mortality. This suggests that inhibiting ZBP1 may improve the therapeutic efficacy of IFN therapy during SARS-CoV-2 infection and possibly other inflammatory conditions where IFN-mediated cell death and pathology occur. [60] [61] More recent evidence suggests that NLRP12-mediated PANoptosis is activated by heme, which can be released by red blood cell lysis during infection or inflammatory disease, in combination with specific components of infection or cellular damage.  Deletion of NLRP12 protects against pathology in animal models of hemolytic disease, suggesting this could also act as a therapeutic target. Similarly, the NLRC5-PANoptosome, which also contains NLRP12, was identified as a response to NAD+ depletion downstream of heme-containing triggers. Deletion of NLRC5 protects against not only hemolytic disease models, but also colitis and HLH models. [22] [23] Additionally, PANoptosis can also be induced by heat stress (HS), such as fever, during infection, and NINJ1 is a known key executioner in this context. Deletion of NINJ1 in a murine model of HS and infection reduces mortality; furthermore, deleting essential PANoptosis effectors upstream completely rescues the mice from mortality, thereby identifying NINJ1 and PANoptosis effectors as potential therapeutic targets. [62]

The regulation of PANoptosis involves numerous PANoptosomes, which encompass multiple sensor molecules such as NLRP3, ZBP1, AIM2, and NLRP12, along with complex-forming molecules such as caspases and RIPKs. These components activate various downstream cell death executioners and play a role in disease. Therefore, modulating the components of this pathway has potential for therapy.

References

  1. ^ a b c d "St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases". www.stjude.org. Retrieved 2024-03-07.
  2. ^ a b Pandeya, Ankit; Kanneganti, Thirumala-Devi (January 2024). "Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes". Trends in Molecular Medicine. 30 (1): 74–88. doi: 10.1016/j.molmed.2023.10.001. ISSN  1471-499X. PMC 10842719. PMID  37977994.
  3. ^ a b c "Promising preclinical cancer therapy harnesses a newly discovered cell death pathway". www.stjude.org. Retrieved 2021-11-16.
  4. ^ a b "ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19". www.stjude.org. Retrieved 2022-06-02.
  5. ^ a b "The PANoptosome: a new frontier in innate immune responses". www.stjude.org. Retrieved 2021-11-16.
  6. ^ a b c d "In the lab, St. Jude scientists identify possible COVID-19 treatment". www.stjude.org. Retrieved 2021-11-16.
  7. ^ a b "Discovering the secrets of the enigmatic caspase-6". www.stjude.org. Retrieved 2021-11-16.
  8. ^ "Breaking the dogma: Key cell death regulator has more than one way to get the job done". www.stjude.org. Retrieved 2021-11-16.
  9. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi: 10.1126/sciimmunol.aag2045. ISSN  2470-9468. PMC  5131924. PMID  27917412.
  10. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R.K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12). doi: 10.1172/jci.insight.136720. ISSN  2379-3708. PMC  7406299. PMID  32554929.
  11. ^ a b "Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease". www.stjude.org. Retrieved 2020-09-11.
  12. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi: 10.4049/immunohorizons.2100059. ISSN  2573-7732. PMC  8522052. PMID  34290111.
  13. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi: 10.1016/j.cell.2020.11.025. ISSN  1097-4172. PMC  7674074. PMID  33278357.
  14. ^ Karki, Rajendra; Lee, SangJoon; Mall, Raghvendra; Pandian, Nagakannan; Wang, Yaqiu; Sharma, Bhesh Raj; Malireddi, Rk Subbarao; Yang, Dong; Trifkovic, Sanja; Steele, Jacob A.; Connelly, Jon P. (2022-05-19). "ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection". Science Immunology. 7 (74): eabo6294. doi: 10.1126/sciimmunol.abo6294. ISSN  2470-9468. PMC  9161373. PMID  35587515.
  15. ^ Wang, Yaqiu; Pandian, Nagakannan; Han, Joo-Hui; Sundaram, Balamurugan; Lee, SangJoon; Karki, Rajendra; Guy, Clifford S.; Kanneganti, Thirumala-Devi (2022-09-28). "Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method". Cellular and Molecular Life Sciences. 79 (10): 531. doi: 10.1007/s00018-022-04564-z. ISSN  1420-9071. PMC  9545391. PMID  36169732.
  16. ^ Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R.K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2023). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi: 10.1016/j.cell.2023.05.005. PMC  10330523. PMID  37267949.
  17. ^ a b Zheng, Min; Karki, Rajendra; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-04-30). "Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense". Cell. 181 (3): 674–687.e13. doi: 10.1016/j.cell.2020.03.040. ISSN  1097-4172. PMC  7425208. PMID  32298652.
  18. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi: 10.3389/fcimb.2020.00237. ISSN  2235-2988. PMC  7274033. PMID  32547960.
  19. ^ a b c Lee, SangJoon; Karki, Rajendra; Wang, Yaqiu; Nguyen, Lam Nhat; Kalathur, Ravi C.; Kanneganti, Thirumala-Devi (September 2021). "AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence". Nature. 597 (7876): 415–419. Bibcode: 2021Natur.597..415L. doi: 10.1038/s41586-021-03875-8. ISSN  1476-4687. PMC  8603942. PMID  34471287.
  20. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi: 10.4049/immunohorizons.2000097. ISSN  2573-7732. PMC  7906112. PMID  33310881.
  21. ^ a b c Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R. K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (2023-06-22). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi: 10.1016/j.cell.2023.05.005. ISSN  1097-4172. PMC  10330523. PMID  37267949.
  22. ^ a b Sundaram, Balamurugan; Pandian, Nagakannan; Kim, Hee Jin; Abdelaal, Hadia M.; Mall, Raghvendra; Indari, Omkar; Sarkar, Roman; Tweedell, Rebecca E.; Alonzo, Emily Q.; Klein, Jonathon; Pruett-Miller, Shondra M.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2024). "NLRC5 senses NAD+ depletion, forming a PANoptosome and driving PANoptosis and inflammation". Cell. doi: 10.1016/j.cell.2024.05.034. ISSN  0092-8674. PMID  38878777.
  23. ^ a b "St. Jude scientists solve decades long mystery of NLRC5 sensor function in cell death and disease". www.stjude.org. Retrieved 2024-06-18.
  24. ^ Man, Si Ming; Kanneganti, Thirumala-Devi (May 2015). "Regulation of inflammasome activation". Immunological Reviews. 265 (1): 6–21. doi: 10.1111/imr.12296. ISSN  1600-065X. PMC  4400844. PMID  25879280.
  25. ^ Shi, Jianjin; Zhao, Yue; Wang, Kun; Shi, Xuyan; Wang, Yue; Huang, Huanwei; Zhuang, Yinghua; Cai, Tao; Wang, Fengchao; Shao, Feng (2015-10-29). "Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death". Nature. 526 (7575): 660–665. Bibcode: 2015Natur.526..660S. doi: 10.1038/nature15514. ISSN  1476-4687. PMID  26375003. S2CID  4407455.
  26. ^ He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai (December 2015). "Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion". Cell Research. 25 (12): 1285–1298. doi: 10.1038/cr.2015.139. ISSN  1748-7838. PMC  4670995. PMID  26611636.
  27. ^ Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C. (2016-07-12). "GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes". Proceedings of the National Academy of Sciences of the United States of America. 113 (28): 7858–7863. Bibcode: 2016PNAS..113.7858A. doi: 10.1073/pnas.1607769113. ISSN  1091-6490. PMC  4948338. PMID  27339137.
  28. ^ Sborgi, Lorenzo; Rühl, Sebastian; Mulvihill, Estefania; Pipercevic, Joka; Heilig, Rosalie; Stahlberg, Henning; Farady, Christopher J.; Müller, Daniel J.; Broz, Petr; Hiller, Sebastian (2016-08-15). "GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death". The EMBO Journal. 35 (16): 1766–1778. doi: 10.15252/embj.201694696. ISSN  1460-2075. PMC  5010048. PMID  27418190.
  29. ^ Kayagaki, Nobuhiko; Warming, Søren; Lamkanfi, Mohamed; Vande Walle, Lieselotte; Louie, Salina; Dong, Jennifer; Newton, Kim; Qu, Yan; Liu, Jinfeng; Heldens, Sherry; Zhang, Juan; Lee, Wyne P.; Roose-Girma, Merone; Dixit, Vishva M. (2011-10-16). "Non-canonical inflammasome activation targets caspase-11". Nature. 479 (7371): 117–121. Bibcode: 2011Natur.479..117K. doi: 10.1038/nature10558. ISSN  1476-4687. PMID  22002608. S2CID  2131385.
  30. ^ Martinon, Fabio; Burns, Kimberly; Tschopp, Jürg (July 2002). "The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta". Molecular Cell. 10 (2): 417–426. doi: 10.1016/s1097-2765(02)00599-3. ISSN  1097-2765. PMID  12191486.
  31. ^ Zhao, Jie; Jitkaew, Siriporn; Cai, Zhenyu; Choksi, Swati; Li, Qiuning; Luo, Ji; Liu, Zheng-Gang (2012-04-03). "Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis". Proceedings of the National Academy of Sciences of the United States of America. 109 (14): 5322–5327. Bibcode: 2012PNAS..109.5322Z. doi: 10.1073/pnas.1200012109. ISSN  1091-6490. PMC  3325682. PMID  22421439.
  32. ^ Sun, Liming; Wang, Huayi; Wang, Zhigao; He, Sudan; Chen, She; Liao, Daohong; Wang, Lai; Yan, Jiacong; Liu, Weilong; Lei, Xiaoguang; Wang, Xiaodong (2012-01-20). "Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase". Cell. 148 (1–2): 213–227. doi: 10.1016/j.cell.2011.11.031. ISSN  1097-4172. PMID  22265413.
  33. ^ Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido (2017-01-24). "Necroptosis: Mechanisms and Relevance to Disease". Annual Review of Pathology. 12: 103–130. doi: 10.1146/annurev-pathol-052016-100247. ISSN  1553-4014. PMC  5786374. PMID  27959630.
  34. ^ Dhuriya, Yogesh K.; Sharma, Divakar (2018-07-06). "Necroptosis: a regulated inflammatory mode of cell death". Journal of Neuroinflammation. 15 (1): 199. doi: 10.1186/s12974-018-1235-0. ISSN  1742-2094. PMC  6035417. PMID  29980212.
  35. ^ Lukens, John R.; Gurung, Prajwal; Vogel, Peter; Johnson, Gordon R.; Carter, Robert A.; McGoldrick, Daniel J.; Bandi, Srinivasa Rao; Calabrese, Christopher R.; Vande Walle, Lieselotte; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi (2014-12-11). "Dietary modulation of the microbiome affects autoinflammatory disease". Nature. 516 (7530): 246–249. Bibcode: 2014Natur.516..246L. doi: 10.1038/nature13788. ISSN  1476-4687. PMC  4268032. PMID  25274309.
  36. ^ Gurung, Prajwal; Burton, Amanda; Kanneganti, Thirumala-Devi (2016-04-19). "NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis". Proceedings of the National Academy of Sciences of the United States of America. 113 (16): 4452–4457. doi: 10.1073/pnas.1601636113. ISSN  1091-6490. PMC  4843439. PMID  27071119.
  37. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R. K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi: 10.1126/sciimmunol.aag2045. ISSN  2470-9468. PMC  5131924. PMID  27917412.
  38. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi: 10.3389/fcimb.2020.00237. ISSN  2235-2988. PMC  7274033. PMID  32547960.
  39. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi: 10.4049/immunohorizons.2000097. ISSN  2573-7732. PMC  7906112. PMID  33310881.
  40. ^ Chen, Wen; Gullett, Jessica M.; Tweedell, Rebecca E.; Kanneganti, Thirumala-Devi (November 2023). "Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease". European Journal of Immunology. 53 (11): e2250235. doi: 10.1002/eji.202250235. ISSN  1521-4141. PMC 10423303. PMID  36782083.
  41. ^ Malireddi, R. K. Subbarao; Bynigeri, Ratnakar R.; Mall, Raghvendra; Connelly, Jon P.; Pruett-Miller, Shondra M.; Kanneganti, Thirumala-Devi (2023-10-20). "Inflammatory cell death, PANoptosis, screen identifies host factors in coronavirus innate immune response as therapeutic targets". Communications Biology. 6 (1): 1071. doi: 10.1038/s42003-023-05414-9. ISSN  2399-3642. PMC  10589293. PMID  37864059.
  42. ^ Jiang, Mingxia; Qi, Ling; Li, Lisha; Wu, Yiming; Song, Dongfeng; Li, Yanjing (2021-10-01). "Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer". International Journal of Cancer. 149 (7): 1408–1420. doi: 10.1002/ijc.33698. ISSN  1097-0215. PMID  34028029.
  43. ^ Someda, Masataka; Kuroki, Shunsuke; Miyachi, Hitoshi; Tachibana, Makoto; Yonehara, Shin (May 2020). "Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis". Cell Death and Differentiation. 27 (5): 1539–1553. doi: 10.1038/s41418-019-0434-2. ISSN  1476-5403. PMC  7206185. PMID  31659279.
  44. ^ Rodriguez, Diego A.; Quarato, Giovanni; Liedmann, Swantje; Tummers, Bart; Zhang, Ting; Guy, Cliff; Crawford, Jeremy Chase; Palacios, Gustavo; Pelletier, Stephane; Kalkavan, Halime; Shaw, Jeremy J. P.; Fitzgerald, Patrick; Chen, Mark J.; Balachandran, Siddharth; Green, Douglas R. (2022-10-11). "Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis". Proceedings of the National Academy of Sciences of the United States of America. 119 (41): e2207240119. doi: 10.1073/pnas.2207240119. ISSN  1091-6490. PMC  9565532. PMID  36191211.
  45. ^ Cai, Hantao; Lv, Mingming; Wang, Tingting (December 2023). "PANoptosis in cancer, the triangle of cell death". Cancer Medicine. 12 (24): 22206–22223. doi: 10.1002/cam4.6803. ISSN  2045-7634. PMC  10757109. PMID  38069556.
  46. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi: 10.4049/immunohorizons.2100059. ISSN  2573-7732. PMC  8522052. PMID  34290111.
  47. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R. K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12): e136720, 136720. doi: 10.1172/jci.insight.136720. ISSN  2379-3708. PMC  7406299. PMID  32554929.
  48. ^ Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi (February 2023). "Inflammasome signaling in colorectal cancer". Translational Research: The Journal of Laboratory and Clinical Medicine. 252: 45–52. doi: 10.1016/j.trsl.2022.09.002. ISSN  1878-1810. PMC  9839553. PMID  36150688.
  49. ^ Mall, Raghvendra; Bynigeri, Ratnakar R.; Karki, Rajendra; Malireddi, R. K. Subbarao; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi (December 2022). "Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology". NAR Cancer. 4 (4): zcac033. doi: 10.1093/narcan/zcac033. ISSN  2632-8674. PMC  9623737. PMID  36329783.
  50. ^ Pan, Hongda; Pan, Jingxin; Li, Pei; Gao, Jianpeng (May 2022). "Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer". Clinical Immunology (Orlando, Fla.). 238: 109019. doi: 10.1016/j.clim.2022.109019. ISSN  1521-7035. PMID  35470064. S2CID  248362726.
  51. ^ He, Puxing; Ma, Yixuan; Wu, Yaolu; Zhou, Qing; Du, Huan (2023). "Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq". Frontiers in Endocrinology. 14: 1164930. doi: 10.3389/fendo.2023.1164930. ISSN  1664-2392. PMC  10338225. PMID  37455906.
  52. ^ Sun, Yanyan; Zhu, Changlian (February 2023). "Potential role of PANoptosis in neuronal cell death: commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons"". Neural Regeneration Research. 18 (2): 339–340. doi: 10.4103/1673-5374.346483. ISSN  1673-5374. PMC  9396522. PMID  35900425.
  53. ^ Qi, Zehong; Zhu, Lili; Wang, Kangkai; Wang, Nian (2023-11-15). "PANoptosis: Emerging mechanisms and disease implications". Life Sciences. 333: 122158. doi: 10.1016/j.lfs.2023.122158. ISSN  1879-0631. PMID  37806654. S2CID  263775829.
  54. ^ Zhu, Peng; Ke, Zhuo-Ran; Chen, Jing-Xian; Li, Shi-Jin; Ma, Tian-Liang; Fan, Xiao-Lei (2023). "Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment". Frontiers in Immunology. 14: 1120034. doi: 10.3389/fimmu.2023.1120034. ISSN  1664-3224. PMC  9948402. PMID  36845112.
  55. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Jonsson, Colleen Beth (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi: 10.1016/j.cell.2020.11.025. ISSN  1097-4172. PMC  7674074. PMID  33278357.
  56. ^ Subbarao Malireddi, R.K.; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth". ImmunoHorizons. 5 (7): 568–580. doi: 10.4049/immunohorizons.2100059. ISSN  2573-7732. PMC  8522052. PMID  34290111.
  57. ^ Karki, Rajendra; Sundaram, Balamurugan; Sharma, Bhesh Raj; Lee, SangJoon; Malireddi, R.K. Subbarao; Nguyen, Lam Nhat; Christgen, Shelbi; Zheng, Min; Wang, Yaqiu; Samir, Parimal; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2021-10-19). "ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis". Cell Reports. 37 (3): 109858. doi: 10.1016/j.celrep.2021.109858. ISSN  2211-1247. PMC  8853634. PMID  34686350.
  58. ^ Karki, Rajendra; Kanneganti, Thirumala-Devi (August 2021). "The 'Cytokine Storm': molecular mechanisms and therapeutic prospects". Trends in Immunology. 42 (8): 681–705. doi: 10.1016/j.it.2021.06.001. ISSN  1471-4906. PMC  9310545. PMID  34217595.
  59. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R.K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Jonsson, Colleen Beth (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi: 10.1016/j.cell.2020.11.025. ISSN  0092-8674. PMC  7674074. PMID  33278357.
  60. ^ Oh, SuHyeon; Lee, SangJoon (2023). "Recent advances in ZBP1-derived PANoptosis against viral infections". Frontiers in Immunology. 14: 1148727. doi: 10.3389/fimmu.2023.1148727. ISSN  1664-3224. PMC  10228733. PMID  37261341.
  61. ^ Schifanella, Luca; Anderson, Jodi; Wieking, Garritt; Southern, Peter J.; Antinori, Spinello; Galli, Massimo; Corbellino, Mario; Lai, Alessia; Klatt, Nichole; Schacker, Timothy W.; Haase, Ashley T. (2023-05-29). "The Defenders of the Alveolus Succumb in COVID-19 Pneumonia to SARS-CoV-2 and Necroptosis, Pyroptosis, and PANoptosis". The Journal of Infectious Diseases. 227 (11): 1245–1254. doi: 10.1093/infdis/jiad056. ISSN  1537-6613. PMC  10226656. PMID  36869698.
  62. ^ Han, Joo-Hui; Karki, Rajendra; Malireddi, R. K. Subbarao; Mall, Raghvendra; Sarkar, Roman; Sharma, Bhesh Raj; Klein, Jonathon; Berns, Harmut; Pisharath, Harshan; Pruett-Miller, Shondra M.; Bae, Sung-Jin; Kanneganti, Thirumala-Devi (2024-02-26). "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress". Nature Communications. 15 (1): 1739. doi: 10.1038/s41467-024-45466-x. ISSN  2041-1723. PMC  10897308. PMID  38409108.