From Wikipedia, the free encyclopedia

The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology.

The theorem states that the number of multiple images produced by a bounded transparent lens must be odd.

Formulation

The gravitational lensing is a thought to mapped from what's known as image plane to source plane following the formula :

.

Argument

If we use direction cosines describing the bent light rays, we can write a vector field on plane .

However, only in some specific directions , will the bent light rays reach the observer, i.e., the images only form where . Then we can directly apply the Poincaré–Hopf theorem .

The index of sources and sinks is +1, and that of saddle points is −1. So the Euler characteristic equals the difference between the number of positive indices and the number of negative indices . For the far field case, there is only one image, i.e., . So the total number of images is , i.e., odd. The strict proof needs Uhlenbeck's Morse theory of null geodesics.

References

  • Chwolson, O. (1924). "Über eine mögliche Form fiktiver Doppelsterne". Astronomische Nachrichten (in German). 221 (20). Wiley: 329–330. Bibcode: 1924AN....221..329C. doi: 10.1002/asna.19242212003. ISSN  0004-6337.
  • Burke, W. L. (1981). "Multiple Gravitational Imaging by Distributed Masses". The Astrophysical Journal. 244. IOP Publishing: L1. Bibcode: 1981ApJ...244L...1B. doi: 10.1086/183466. ISSN  0004-637X.
  • McKenzie, Ross H. (1985). "A gravitational lens produces an odd number of images". Journal of Mathematical Physics. 26 (7). AIP Publishing: 1592–1596. Bibcode: 1985JMP....26.1592M. doi: 10.1063/1.526923. ISSN  0022-2488.
  • Kozameh, Carlos; Lamberti, Pedro W.; Reula, Oscar (1991). "Global aspects of light cone cuts". Journal of Mathematical Physics. 32 (12). AIP Publishing: 3423–3426. Bibcode: 1991JMP....32.3423K. doi: 10.1063/1.529456. ISSN  0022-2488.
  • Lombardi, Marco (1998-01-20). "An application of the topological degree to gravitational lenses". Modern Physics Letters A. 13 (2). World Scientific Pub Co Pte Lt: 83–86. Bibcode: 1998MPLA...13...83L. doi: 10.1142/s0217732398000115. ISSN  0217-7323.
  • Wambsganss, Joachim (1998). "Gravitational Lensing in Astronomy". Living Reviews in Relativity. 1 (1): 12. arXiv: astro-ph/9812021. Bibcode: 1998LRR.....1...12W. doi: 10.12942/lrr-1998-12. PMC  5567250. PMID  28937183.
  • Schneider, P.; Ehlers, J.; Falco, E. E. (1999). Gravitational Lenses". Astronomy and Astrophysics Library. Springer. ISBN  9783540665069.
  • Giannoni, Fabio; Lombardi, Marco (1999). "Gravitational lenses: Odd or even images?". Classical and Quantum Gravity. 16 (6): 1689–1694. Bibcode: 1999CQGra..16.1689G. doi: 10.1088/0264-9381/16/6/303. S2CID  250827307.
  • Frittelli, Simonetta; Newman, Ezra T. (1999-04-28). "Exact universal gravitational lensing equation". Physical Review D. 59 (12): 124001. arXiv: gr-qc/9810017. Bibcode: 1999PhRvD..59l4001F. doi: 10.1103/physrevd.59.124001. ISSN  0556-2821. S2CID  248125.
  • Perlick, Volker (1999). "Gravitational Lensing from a Geometric Viewpoint". Einstein's Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers. Lecture Notes in Physics. Vol. 540. pp. 373–425. doi: 10.1007/3-540-46580-4_6. ISBN  978-3-540-67073-5.
  • Perlick, Volker (September 2004). "Gravitational lensing from a spacetime perspective". Living Reviews in Relativity. 7 (1): 9. arXiv: 1010.3416. Bibcode: 2004LRR.....7....9P. doi: 10.12942/lrr-2004-9. PMC  5255571. PMID  28179867.