From Wikipedia, the free encyclopedia

Neural top–down control of physiology concerns the direct regulation by the brain of physiological functions (in addition to smooth muscle and glandular ones). Cellular functions include the immune system’s production of T-lymphocytes and antibodies, and nonimmune related homeostatic functions such as liver gluconeogenesis, sodium reabsorption, osmoregulation, and brown adipose tissue nonshivering thermogenesis. This regulation occurs through the sympathetic and parasympathetic system (the autonomic nervous system), and their direct innervation of body organs and tissues that starts in the brainstem. There is also a noninnervation hormonal control through the hypothalamus and pituitary ( HPA). These lower brain areas are under control of cerebral cortex ones. Such cortical regulation differs between its left and right sides. Pavlovian conditioning shows that brain control over basic cell level physiological function can be learned.

Higher brain

Cerebral cortex

Sympathetic and parasympathetic nervous systems and the hypothalamus are regulated by the higher brain. [1] [2] [3] [4] Through them, the higher cerebral cortex areas can control the immune system, and the body’s homeostatic and stress physiology. Areas doing this include the insular cortex, [5] [6] [7] the orbital, and the medial prefrontal cortices. [8] [9] These cerebral areas also control smooth muscle and glandular physiological processes through the sympathetic and parasympathetic nervous system including blood circulation, urogenital, gastrointestinal [10] functions, pancreatic gut secretions, [11] respiration, coughing, vomiting, piloerection, pupil dilation, lacrimation and salivation. [12]

Lateralization

The sympathetic nervous system is predominantly controlled by the right side of the brain (focused upon the insular cortex), while the left side predominantly controls the parasympathetic nervous system. [4] The cerebral cortex in rodents shows lateral specialization in its regulation of immunity with immunosuppression being controlled by the right hemisphere, and immunopotention by the left one. [9] [13] Humans show similar lateral specialized control of the immune system from the evidence of strokes, [14] surgery to control epilepsy, [15] and the application of TMS. [16]

Brainstem

The higher brain top down control of physiology is mediated by the sympathetic and parasympathetic nervous systems in the brainstem, [1] [2] [3] [4] and the hypothalamus. [1] [17] [18] The sympathetic nervous system arises in brainstem nuclei that project down into intermediolateral columns of thoracolumbar spinal cord neurons in spinal segments T1–L2. The parasympathetic nervous system in the motor nuclei of cranial nerves III, VII, IX, (control over the pupil and salivary glands) and X (vagus –many functions including immunity) and sacral spinal segments (gastrointestinal and urogenital systems). [12] Another control occurs through top down control by the medial areas of the prefrontal cortex. [1] [17] [18] upon the hypothalamus which has a nonnerve control of the body through hormonal secretions of the pituitary.

Immunity

The brain controls immunity both indirectly through HPA glucocorticoid secretions from the pituitary, and by various direct innervations. [19]

  • Antibodies. There is sympathetic innervation of the thymus gland. [20] Sympathetic control exists over antibody production, [21] and the modulation of cytokine concentrations. [22]
  • Cellular immunity. An intact sympathetic nervous system is required to maintain full cellular immunoregulation as denervated mice do not produce and activate, for example, splenic suppressor T cells, or thymic NKT cells. [23]
  • Organ inflammation. Sympathetic innervation of various organs [19] contacts macrophages and dendritic cells and can increase local inflammation including the kidney [24] gut, [25] the skin, [26] and the synovial joints [27]
  • Antiinflammation. The vagus nerve carries a parasympathetic cholinergic antiinflammatory pathway that reduces proinflammatory cytokines such as TNF by spleen macrophages in the red pulp and the marginal zone and so the activation of inflammation. [28] [29] This control is in part controlled by direct innervation of body organs such as the spleen. [30] However, the existence of the parasympathetic antiinflammatory nerve pathway is controversial with one reviewer stating: “there is no evidence for an anti-inflammatory role of the efferent vagus nerve that is independent of the sympathetic nervous system.” [31]

Metabolism

The liver receives both sympathetic and parasympathetic nervous system innervation. [32]

Other

Conditioning

The brains of animals can anticipatorily learn to control cell level physiology such as immunity through Pavlovian conditioning. In this conditioning, a neutral stimulus saccharin is paired in a drink with an agent, cyclophosphamide, that produces an unconditioned response ( immunosuppression). After learning this pairing, the taste of saccharin by itself through neural top down control created immunosuppression, as a new conditioned response. [42] This work was originally done on rats, however, the same conditioning can also occur in humans. [43] The conditioned response happens in the brain with the ventromedial nucleus of the hypothalamus providing the output pathway to the immune system, the amygdala, the input of visceral information, and the insular cortex acquires and creates the conditioned response. [5] The production of different components of the immune system can be controlled as conditioned responses:

  • Antibodies [43] [44] [45]
  • IL-2 [46] [47]
  • B, CD8+ T cells and CD4+ naive and memory T cells, and granulocytes. [48] Such conditioning in rats can last a year. [49]

Nonimmune functions can also be conditioned:

See also

References

  1. ^ a b c d Cerqueira, J. O. J.; Almeida, O. F. X.; Sousa, N. (2008). "The stressed prefrontal cortex. Left? Right!". Brain, Behavior, and Immunity. 22 (5): 630–638. doi: 10.1016/j.bbi.2008.01.005. hdl: 1822/61458. PMID  18281193. S2CID  9876327.
  2. ^ a b Critchley, H. D. (2005). "Neural mechanisms of autonomic, affective, and cognitive integration". The Journal of Comparative Neurology. 493 (1): 154–166. doi: 10.1002/cne.20749. PMID  16254997. S2CID  32616395.
  3. ^ a b Van Eden, C. G.; Buijs, R. M. (2000). "Functional neuroanatomy of the prefrontal cortex: autonomic interactions". Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures. Progress in Brain Research. Vol. 126. pp. 49–62. doi: 10.1016/S0079-6123(00)26006-8. ISBN  9780444503329. PMID  11105639.
  4. ^ a b c Craig, A. D. (B. (2005). "Forebrain emotional asymmetry: A neuroanatomical basis?". Trends in Cognitive Sciences. 9 (12): 566–571. doi: 10.1016/j.tics.2005.10.005. PMID  16275155. S2CID  16892662.
  5. ^ a b Pacheco-Lopez, G.; Niemi, M. B.; Kou, W.; HĂ€rting, M.; Fandrey, J.; Schedlowski, M. (2005). "Neural Substrates for Behaviorally Conditioned Immunosuppression in the Rat". Journal of Neuroscience. 25 (9): 2330–2337. doi: 10.1523/JNEUROSCI.4230-04.2005. PMC  6726099. PMID  15745959.
  6. ^ RamĂ­rez-Amaya, V.; Alvarez-Borda, B.; Ormsby, C. E.; MartĂ­nez, R. D.; PĂ©rez-Montfort, R.; BermĂșdez-Rattoni, F. (1996). "Insular cortex lesions impair the acquisition of conditioned immunosuppression". Brain, Behavior, and Immunity. 10 (2): 103–114. doi: 10.1006/brbi.1996.0011. PMID  8811934. S2CID  24813018.
  7. ^ Ramı́Rez-Amaya, V.; Bermudez-Rattoni, F. (1999). "Conditioned Enhancement of Antibody Production is Disrupted by Insular Cortex and Amygdala but Not Hippocampal Lesions". Brain, Behavior, and Immunity. 13 (1): 46–60. doi: 10.1006/brbi.1998.0547. PMID  10371677. S2CID  20527835.
  8. ^ Ohira, H.; Isowa, T.; Nomura, M.; Ichikawa, N.; Kimura, K.; Miyakoshi, M.; Iidaka, T.; Fukuyama, S.; Nakajima, T.; Yamada, J. (2008). "Imaging brain and immune association accompanying cognitive appraisal of an acute stressor". NeuroImage. 39 (1): 500–514. doi: 10.1016/j.neuroimage.2007.08.017. PMID  17913515. S2CID  26357564.
  9. ^ a b Vlajković, S.; Nikolić, V.; Nikolić, A.; Milanović, S.; Janković, B. D. (1994). "Asymmetrical modulation of immune reactivity in left- and right-biased rats after ipsilateral ablation of the prefrontal, parietal and occipital brain neocortex". The International Journal of Neuroscience. 78 (1–2): 123–134. doi: 10.3109/00207459408986051. PMID  7829286.
  10. ^ a b Pocai, A.; Obici, S.; Schwartz, G. J.; Rossetti, L. (2005). "A brain-liver circuit regulates glucose homeostasis". Cell Metabolism. 1 (1): 53–61. doi: 10.1016/j.cmet.2004.11.001. PMID  16054044.
  11. ^ Love, J. A.; Yi, E.; Smith, T. G. (2007). "Autonomic pathways regulating pancreatic exocrine secretion". Autonomic Neuroscience. 133 (1): 19–34. doi: 10.1016/j.autneu.2006.10.001. PMID  17113358. S2CID  24929003.
  12. ^ a b Brading, A. (1999). The autonomic nervous system and its effectors. Oxford: Blackwell Science. ISBN  978-0-632-02624-1.
  13. ^ BarnĂ©oud, P.; Neveu, P. J.; Vitiello, S.; MormĂšde, P.; Le Moal, M. (1988). "Brain neocortex immunomodulation in rats". Brain Research. 474 (2): 394–398. doi: 10.1016/0006-8993(88)90458-1. PMID  3145098. S2CID  23658789.
  14. ^ Koch, H. J.; Uyanik, G.; Bogdahn, U.; Ickenstein, G. W. (2006). "Relation between Laterality and Immune Response after Acute Cerebral Ischemia". Neuroimmunomodulation. 13 (1): 8–12. doi: 10.1159/000092108. PMID  16612132. S2CID  21581127.
  15. ^ Meador, K. J.; Loring, D. W.; Ray, P. G.; Helman, S. W.; Vazquez, B. R.; Neveu, P. J. (2004). "Role of cerebral lateralization in control of immune processes in humans". Annals of Neurology. 55 (6): 840–844. doi: 10.1002/ana.20105. PMID  15174018. S2CID  25106845.
  16. ^ Clow, A.; Lambert, S.; Evans, P.; Hucklebridge, F.; Higuchi, K. (2003). "An investigation into asymmetrical cortical regulation of salivary S-IgA in conscious man using transcranial magnetic stimulation". International Journal of Psychophysiology. 47 (1): 57–64. doi: 10.1016/S0167-8760(02)00093-4. PMID  12543446.
  17. ^ a b Radley, J. J.; Arias, C. M.; Sawchenko, P. E. (2006). "Regional Differentiation of the Medial Prefrontal Cortex in Regulating Adaptive Responses to Acute Emotional Stress". Journal of Neuroscience. 26 (50): 12967–12976. doi: 10.1523/JNEUROSCI.4297-06.2006. PMC  6674963. PMID  17167086.
  18. ^ a b Kern, S.; Oakes, T. R.; Stone, C. K.; McAuliff, E. M.; Kirschbaum, C.; Davidson, R. J. (2008). "Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor". Psychoneuroendocrinology. 33 (4): 517–529. doi: 10.1016/j.psyneuen.2008.01.010. PMC  2601562. PMID  18337016.
  19. ^ a b Sternberg, E. M. (2006). "Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens". Nature Reviews Immunology. 6 (4): 318–328. doi: 10.1038/nri1810. PMC  1783839. PMID  16557263.
  20. ^ Trotter, R. N.; Stornetta, R. L.; Guyenet, P. G.; Roberts, M. R. (2007). "Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus". Autonomic Neuroscience. 131 (1–2): 9–20. doi: 10.1016/j.autneu.2006.06.001. PMID  16843070. S2CID  25595673.
  21. ^ Besedovsky, H. O.; Del Rey, A.; Sorkin, E.; Da Prada, M.; Keller, H. H. (1979). "Immunoregulation mediated by the sympathetic nervous system". Cellular Immunology. 48 (2): 346–355. doi: 10.1016/0008-8749(79)90129-1. PMID  389444.
  22. ^ Kin, N. W.; Sanders, V. M. (2006). "It takes nerve to tell T and B cells what to do". Journal of Leukocyte Biology. 79 (6): 1093–1104. doi: 10.1189/jlb.1105625. PMID  16531560. S2CID  20491482.
  23. ^ Li, X.; Taylor, S.; Zegarelli, B.; Shen, S.; O'Rourke, J.; Cone, R. E. (2004). "The induction of splenic suppressor T cells through an immune-privileged site requires an intact sympathetic nervous system". Journal of Neuroimmunology. 153 (1–2): 40–49. doi: 10.1016/j.jneuroim.2004.04.008. PMID  15265662. S2CID  41872803.
  24. ^ Veelken, R.; Vogel, E. -M.; Hilgers, K.; Amann, K.; Hartner, A.; Sass, G.; Neuhuber, W.; Tiegs, G. (2008). "Autonomic Renal Denervation Ameliorates Experimental Glomerulonephritis". Journal of the American Society of Nephrology. 19 (7): 1371–1378. doi: 10.1681/ASN.2007050552. PMC  2440306. PMID  18400940.
  25. ^ Straub, R. H.; Grum, F.; Strauch, U.; Capellino, S.; Bataille, F.; Bleich, A.; Falk, W.; Schölmerich, J.; Obermeier, F. (2008). "Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation". Gut. 57 (7): 911–921. doi: 10.1136/gut.2007.125401. PMID  18308830. S2CID  25930381.
  26. ^ Pavlovic, S.; Daniltchenko, M.; Tobin, D. J.; Hagen, E.; Hunt, S. P.; Klapp, B. F.; Arck, P. C.; Peters, E. M. J. (2007). "Further Exploring the Brain–Skin Connection: Stress Worsens Dermatitis via Substance P-dependent Neurogenic Inflammation in Mice". Journal of Investigative Dermatology. 128 (2): 434–446. doi: 10.1038/sj.jid.5701079. PMID  17914449.
  27. ^ Miller, L. E.; JĂŒsten, H. P.; Schölmerich, J.; Straub, R. H. (2000). "The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages". The FASEB Journal. 14 (13): 2097–2107. doi: 10.1096/fj.99-1082com. PMID  11023994. S2CID  6610938.
  28. ^ Huston, J. M.; Ochani, M.; Rosas-Ballina, M.; Liao, H.; Ochani, K.; Pavlov, V. A.; Gallowitsch-Puerta, M.; Ashok, M.; Czura, C. J.; Foxwell, B.; Tracey, K. J.; Ulloa, L. (2006). "Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis". Journal of Experimental Medicine. 203 (7): 1623–1628. doi: 10.1084/jem.20052362. PMC  2118357. PMID  16785311.
  29. ^ Rosas-Ballina, M.; Ochani, M.; Parrish, W. R.; Ochani, K.; Harris, Y. T.; Huston, J. M.; Chavan, S.; Tracey, K. J. (2008). "Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia". Proceedings of the National Academy of Sciences. 105 (31): 11008–11013. Bibcode: 2008PNAS..10511008R. doi: 10.1073/pnas.0803237105. PMC  2504833. PMID  18669662.
  30. ^ Exton, M. S.; Schult, M.; Donath, S.; Strubel, T.; Bode, U.; Del Rey, A.; Westermann, J.; Schedlowski, M. (1999). "Conditioned immunosuppression makes subtherapeutic cyclosporin effective via splenic innervation". The American Journal of Physiology. 276 (6 Pt 2): R1710–R1717. doi: 10.1152/ajpregu.1999.276.6.R1710. PMID  10362751.
  31. ^ Nance, D. M.; Sanders, V. M. (2007). "Autonomic innervation and regulation of the immune system (1987–2007)". Brain, Behavior, and Immunity. 21 (6): 736–745. doi: 10.1016/j.bbi.2007.03.008. PMC  1986730. PMID  17467231. p. 741
  32. ^ Uyama, N.; Geerts, A.; Reynaert, H. (2004). "Neural connections between the hypothalamus and the liver". The Anatomical Record. 280A (1): 808–820. doi: 10.1002/ar.a.20086. PMID  15382020.
  33. ^ Wang, P. Y. T.; Caspi, L.; Lam, C. K. L.; Chari, M.; Li, X.; Light, P. E.; Gutierrez-Juarez, R.; Ang, M.; Schwartz, G. J.; Lam, T. K. T. (2008). "Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production". Nature. 452 (7190): 1012–1016. Bibcode: 2008Natur.452.1012W. doi: 10.1038/nature06852. PMID  18401341. S2CID  4425358.
  34. ^ a b Shimazu, T. (1981). "Central nervous system regulation of liver and adipose tissue metabolism". Diabetologia. 20 Suppl (3): 343–356. doi: 10.1007/BF00254502. PMID  7014330. S2CID  10191299.
  35. ^ Brunicardi, F. C.; Shavelle, D. M.; Andersen, D. K. (1995). "Neural regulation of the endocrine pancreas". International Journal of Pancreatology. 18 (3): 177–195. doi: 10.1007/BF02784941. PMID  8708389. S2CID  20558942.
  36. ^ Klieverik, L. P.; Janssen, S. F.; Riel, A. V.; Foppen, E.; Bisschop, P. H.; Serlie, M. J.; Boelen, A.; Ackermans, M. T.; Sauerwein, H. P.; Fliers, E.; Kalsbeek, A. (2009). "Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver". Proceedings of the National Academy of Sciences. 106 (14): 5966–5971. Bibcode: 2009PNAS..106.5966K. doi: 10.1073/pnas.0805355106. PMC  2660059. PMID  19321430.
  37. ^ Nakamura, K.; Morrison, S. F. (2006). "Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue". AJP: Regulatory, Integrative and Comparative Physiology. 292 (1): R127–R136. doi: 10.1152/ajpregu.00427.2006. PMC  2441894. PMID  16931649.
  38. ^ Edwards, A. V.; Jones, C. T. (1993). "Autonomic control of adrenal function". Journal of Anatomy. 183 (Pt 2): 291–307. PMC  1259909. PMID  8300417.
  39. ^ Engeland, W. (2007). "Functional Innervation of the Adrenal Cortex by the Splanchnic Nerve". Hormone and Metabolic Research. 30 (6/07): 311–314. doi: 10.1055/s-2007-978890. PMID  9694555.
  40. ^ Dibona, G. F. (2000). "Neural control of the kidney: Functionally specific renal sympathetic nerve fibers". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 279 (5): R1517–R1524. doi: 10.1152/ajpregu.2000.279.5.r1517. PMID  11049831. S2CID  8795875.
  41. ^ Denton, K. M.; Luff, S. E.; Shweta, A.; Anderson, W. P. (2004). "Differential Neural Control of Glomerular Ultrafiltration". Clinical and Experimental Pharmacology and Physiology. 31 (5–6): 380–386. doi: 10.1111/j.1440-1681.2004.04002.x. PMID  15191417. S2CID  31128522.
  42. ^ Ader, R.; Cohen, N. (1975). "Behaviorally conditioned immunosuppression". Psychosomatic Medicine. 37 (4): 333–340. doi: 10.1097/00006842-197507000-00007. PMID  1162023.
  43. ^ a b Goebel, M. U.; Trebst, A. E.; Steiner, J.; Xie, Y. F.; Exton, M. S.; Frede, S.; Canbay, A. E.; Michel, M. C.; Heemann, U.; Schedlowski, M. (2002). "Behavioral conditioning of immunosuppression is possible in humans". The FASEB Journal. 16 (14): 1869–1873. doi: 10.1096/fj.02-0389com. PMID  12468450. S2CID  1135858.
  44. ^ Alvarez-Borda, B.; RamĂ­rez-Amaya, V.; PĂ©rez-Montfort, R.; BermĂșdez-Rattoni, F. (1995). "Enhancement of antibody production by a learning paradigm". Neurobiology of Learning and Memory. 64 (2): 103–105. doi: 10.1006/nlme.1995.1048. PMID  7582817. S2CID  36079870.
  45. ^ Oberbeck, R.; Kromm, A.; Exton, M. S.; Schade, U.; Schedlowski, M. (2003). "Pavlovian conditioning of endotoxin-tolerance in rats". Brain, Behavior, and Immunity. 17 (1): 20–27. doi: 10.1016/S0889-1591(02)00031-4. PMID  12615046. S2CID  26029221.
  46. ^ Pacheco-LĂłpez, G.; Niemi, M. -B.; Kou, W.; HĂ€rting, M.; Del Rey, A.; Besedovsky, H. O.; Schedlowski, M. (2004). "Behavioural endocrine immune-conditioned response is induced by taste and superantigen pairing". Neuroscience. 129 (3): 555–562. doi: 10.1016/j.neuroscience.2004.08.033. PMID  15541877. S2CID  25300739.
  47. ^ Exton, M. S.; Von Hörsten, S.; Schult, M.; Vöge, J.; Strubel, T.; Donath, S.; SteinmĂŒller, C.; Seeliger, H.; Nagel, E.; Westermann, J. R.; Schedlowski, M. (1998). "Behaviorally conditioned immunosuppression using cyclosporine A: Central nervous system reduces IL-2 production via splenic innervation". Journal of Neuroimmunology. 88 (1–2): 182–191. doi: 10.1016/S0165-5728(98)00122-2. PMID  9688340. S2CID  20921504.
  48. ^ Von Hörsten, S.; Exton, M. S.; Schult, M.; Nagel, E.; Stalp, M.; Schweitzer, G.; Vöge, J.; Del Rey, A.; Schedlowski, M.; Westermann, J. R. (1998). "Behaviorally conditioned effects of Cyclosporine a on the immune system of rats: Specific alterations of blood leukocyte numbers and decrease of granulocyte function". Journal of Neuroimmunology. 85 (2): 193–201. doi: 10.1016/S0165-5728(98)00011-3. PMID  9630168. S2CID  36315130.
  49. ^ Exton, M. S.; Von Hörsten, S.; Strubel, T.; Donath, S.; Schedlowski, M.; Westermann, J. (2000). "Conditioned alterations of specific blood leukocyte subsets are reconditionable". Neuroimmunomodulation. 7 (2): 106–114. doi: 10.1159/000026428. PMID  10686521. S2CID  44539812.
  50. ^ Exton, M. S.; Bull, D. F.; King, M. G.; Husband, A. J. (1995). "Behavioral conditioning of endotoxin-induced plasma iron alterations". Pharmacology Biochemistry and Behavior. 50 (4): 675–679. doi: 10.1016/0091-3057(94)00353-X. PMID  7617718. S2CID  24150355.
  51. ^ Irie, M.; Asami, S.; Nagata, S.; Miyata, M.; Kasai, H. (2000). "Classical conditioning of oxidative DNA damage in rats". Neuroscience Letters. 288 (1): 13–16. doi: 10.1016/S0304-3940(00)01194-0. PMID  10869804. S2CID  28291041.
  52. ^ Stockhorst, U.; SteingrĂŒber, H. J.; Scherbaum, W. A. (2000). "Classically conditioned responses following repeated insulin and glucose administration in humans". Behavioural Brain Research. 110 (1–2): 143–159. doi: 10.1016/S0166-4328(99)00192-8. PMID  10802311. S2CID  11190637.
  53. ^ a b Stockhorst, U.; Mahl, N.; Krueger, M.; Huenig, A.; Schottenfeldnaor, Y.; Huebinger, A.; Berresheim, H.; Steingrueber, H.; Scherbaum, W. (2004). "Classical conditioning and conditionability of insulin and glucose effects in healthy humans". Physiology & Behavior. 81 (3): 375–388. doi: 10.1016/j.physbeh.2003.12.019. PMID  15135009. S2CID  2498317.
  54. ^ Fehm-Wolfsdorf, G.; Gnadler, M.; Kern, W.; Klosterhalfen, W.; Kerner, W. (1993). "Classically conditioned changes of blood glucose level in humans". Physiology & Behavior. 54 (1): 155–160. doi: 10.1016/0031-9384(93)90058-N. PMID  8327595. S2CID  35578093.