From Wikipedia, the free encyclopedia

The dendritic cell-based cancer vaccine is an innovation in therapeutic strategy for cancer patients.

Dendritic cells (DCs) are antigen presenting cells for the induction of antigen specific T cell response. [1] DC-based immunotherapy is safe and can promote antitumor immune responses and prolonged survival of cancer patients. [2]

Human DC subsets

Immature dendritic cells

Non-activated (immature) DCs are usually located in the peripheral non-lymphoid tissues and they can present self-antigens to T cells, that leads to immune tolerance either through T cell deletion or through the differentiation of regulatory T cells. [3]

Mature dendritic cells

Mature DCs have ability to present antigens in the lymphoid tissues, and to prime, activate, and expand immune effector cells with unique functions and cytokine profiles. [4]

Myeloid dendritic cells (cDCs)

Myeloid or conventional DCs (cDCs) are derived from myeloid progenitor cells in the bone marrow and are characterized by expression of CD11c. [5] cDCs can be subdivided into 3 groups: monocyte-derived DCs, CD1a- interstitial DCs, and CD1a+ Langerhans cells. [6]

Plasmacytoid dendritic cells (pDCs)

Plasmacytoid dendritic cells (pDCs) differentiate from lymphoid progenitor cells in the lymphoid tissues. [7] They express CD123 and product high levels of type I interferon. [8] pDCs also contribute to inflammatory responses in the steady state and in pathology. During inflammatory response, inflammatory DCs (iDCs) are generated from monocytes. [9]

Function of cancer therapeutic vaccines

The main goal of the therapeutic vaccines is to elicit cellular immunity. [10] They should prime naïve T cell, and induce transition from chronically activated non-protective CD8+ T cells to healthy CD8+ T cells that can produce cytotoxic T lymphocytes (CTLs), which recognize and eliminate cancer cells by recognizing specific antigens. This process also creates long-lived memory CD8+ T cells that will act to prevent relapse. [11] The most critical step in vaccination is the effective presentation of cancer antigens to T cells, and because of DCs are the most efficient antigen presenting cells, they are the promising option for improvement of therapeutic vaccines. [12]

Methods for exploiting dendritic cells in cancer therapeutic vaccines

DC-based immunotherapy approach can be employed in a couple of ways:

Direct targeting/stimulating of the DCs in vivo to accentuate their anticancer phenotype

Many trials evaluating in vivo DC stimulation with synthetic peptides failed because of inability of effective stimulation of CD4+ cellular responses and stimulation of Th2 type cytokines. [13] The solution showing clinical responses was pre-treatment with single-dose cyclophosphamide as well as vaccination with tumor associated antigens (TAAs) and granulocyte macrophage colony stimulating factor (GM-CSF). [14]

Stimulation of the DCs ex vivo and infusing them back into the host for carrying out anticancer effector function

In this way, DCs’ precursors are isolated from the patient through leukapheresis and after maturation/stimulation of these precursors ex vivo, fully mature DCs are injected back into the patient. [15] There are different ways applied to generate cancer cells-specific DCs. We can used specific TAAs, tumor lysates, created DC-cancer cell fusions, electroporation/transfection of DCs with total cancer cell-mRNA or tumor derived exosomes (TDEs) by the stimulation. There is also the possibility of additional co-stimulating with cytokine “cocktails” to assure strong maturation. [14]

Dendritic cell vaccine against brain tumor

The most well-known source of antigens used for vaccines in Glioblastoma (Aggressive type of brain tumor) investigations were whole tumor lysate, CMV antigen RNA and tumor associated peptides for instance EGFRvIII. The initial studies showed that patients developed immune responses as measured by Interferon-gamma expression in the peripheral blood, systemic cytokine responses, or CD8+ antigen specific T cell expansion. Clinical response rates were not as vigorous as the immune response rates. Overall survival (OS) and progression free survival (PFS) varied in different studies but were enhanced compared to historical controls. [16]

Dendritic cell vaccine against COVID-19

Autologous dendritic cells previously loaded ex-vivo with SARS-CoV-2 spike protein. Subjects eligible for treatment will be those who at baseline, are not actively infected with SARS-CoV-2, have no evidence of prior infection with SARS-CoV-2 based on serologic testing, and give informed consent for a vaccination with AV-COVID-19. The patient population will include the elderly and others at higher risk for poor outcomes after COVID-19 infection. For this reason, individuals will not be excluded solely on the basis of age, body mass index, history of hypertension, diabetes, cancer, or autoimmune disease.[ citation needed]

Sipuleucel-T

Sipuleucel-T is the first DCs- based cancer vaccine for men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (CRPC), approved by the US Food and Drug Administration (FDA) . [17] [18] It is an active cellular immunotherapy, which involves obtaining antigen-presenting autologous dendritic cells from the patient following a leukapheresis procedure. [19] The cells are incubated ex vivo in the presence of a recombinant fusion protein PA2024 containing a prostate antigen, prostate acid phosphatase and GM-CSF, an immune-cell activator. The cells are then returned to the patient to generate an immune response. [20] [21]

References

  1. ^ Stockwin, Luke H.; McGonagle, Dennis; Martin, Iain G.; Blair, G. Eric (April 2000). "Dendritic cells: Immunological sentinels with a central role in health and disease". Immunology and Cell Biology. 78 (2): 91–102. doi: 10.1046/j.1440-1711.2000.00888.x. ISSN  0818-9641. PMC  7159383. PMID  10762408.
  2. ^ Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J. (2014-12-12). "Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy". The Yale Journal of Biology and Medicine. 87 (4): 491–518. ISSN  0044-0086. PMC  4257036. PMID  25506283.
  3. ^ Mellman, Ira (2013-09-01). "Dendritic Cells: Master Regulators of the Immune Response". Cancer Immunology Research. 1 (3): 145–149. doi: 10.1158/2326-6066.CIR-13-0102. ISSN  2326-6066. PMID  24777676.
  4. ^ Dalod, Marc; Chelbi, Rabie; Malissen, Bernard; Lawrence, Toby (2014-05-16). "Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming". The EMBO Journal. 33 (10): 1104–1116. doi: 10.1002/embj.201488027. ISSN  0261-4189. PMC  4193918. PMID  24737868.
  5. ^ Chistiakov, Dimitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V. (2015-06-01). "Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation". Immunobiology. 220 (6): 833–844. doi: 10.1016/j.imbio.2014.12.010. PMID  25595536.
  6. ^ Merad, Miriam; Sathe, Priyanka; Helft, Julie; Miller, Jennifer; Mortha, Arthur (2013). "The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting". Annual Review of Immunology. 31: 563–604. doi: 10.1146/annurev-immunol-020711-074950. ISSN  0732-0582. PMC  3853342. PMID  23516985.
  7. ^ McKenna, Kelli; Beignon, Anne-Sophie; Bhardwaj, Nina (January 2005). "Plasmacytoid Dendritic Cells: Linking Innate and Adaptive Immunity". Journal of Virology. 79 (1): 17–27. doi: 10.1128/JVI.79.1.17-27.2005. ISSN  0022-538X. PMC  538703. PMID  15596797.
  8. ^ Swiecki, Melissa; Colonna, Marco (August 2015). "The multifaceted biology of plasmacytoid dendritic cells". Nature Reviews Immunology. 15 (8): 471–485. doi: 10.1038/nri3865. ISSN  1474-1733. PMC  4808588. PMID  26160613.
  9. ^ Chistiakov, Dimitry A.; Orekhov, Alexander N.; Sobenin, Igor A.; Bobryshev, Yuri V. (2014-07-25). "Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation". Frontiers in Physiology. 5: 279. doi: 10.3389/fphys.2014.00279. ISSN  1664-042X. PMC  4110479. PMID  25120492.
  10. ^ Guo, Chunqing; Manjili, Masoud H.; Subjeck, John R.; Sarkar, Devanand; Fisher, Paul B.; Wang, Xiang-Yang (2013). Therapeutic Cancer Vaccines: Past, Present and Future. Vol. 119. pp. 421–475. doi: 10.1016/B978-0-12-407190-2.00007-1. ISBN  9780124071902. ISSN  0065-230X. PMC  3721379. PMID  23870514. {{ cite book}}: |journal= ignored ( help)
  11. ^ Palucka, Karolina; Banchereau, Jacques (2013-07-25). "Dendritic cell-based cancer therapeutic vaccines". Immunity. 39 (1): 38–48. doi: 10.1016/j.immuni.2013.07.004. ISSN  1074-7613. PMC  3788678. PMID  23890062.
  12. ^ Anguille, Sébastien; Smits, Evelien L; Lion, Eva; van Tendeloo, Viggo F; Berneman, Zwi N (2014-06-01). "Clinical use of dendritic cells for cancer therapy". The Lancet Oncology. 15 (7): e257–e267. doi: 10.1016/S1470-2045(13)70585-0. PMID  24872109.
  13. ^ Rosenberg, Steven A.; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Dudley, Mark E.; Schwarz, Susan L. (March 1998). "Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma". Nature Medicine. 4 (3): 321–327. doi: 10.1038/nm0398-321. ISSN  1078-8956. PMC  2064864. PMID  9500606.
  14. ^ a b Dudek, Aleksandra M.; Martin, Shaun; Garg, Abhishek D.; Agostinis, Patrizia (2013-12-11). "Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity". Frontiers in Immunology. 4: 438. doi: 10.3389/fimmu.2013.00438. ISSN  1664-3224. PMC  3858649. PMID  24376443.
  15. ^ Palucka, Karolina; Banchereau, Jacques (2012-03-22). "Cancer immunotherapy via dendritic cells". Nature Reviews. Cancer. 12 (4): 265–277. doi: 10.1038/nrc3258. ISSN  1474-175X. PMC  3433802. PMID  22437871.
  16. ^ Dastmalchi, Farhad; Karachi, Aida; Mitchell, Duane; Rahman, Maryam (2018), "Dendritic Cell Therapy", eLS, American Cancer Society, pp. 1–27, doi: 10.1002/9780470015902.a0024243, ISBN  9780470015902, S2CID  155185753
  17. ^ Hammerstrom, Aimee E.; Cauley, Diana H.; Atkinson, Bradley J.; Sharma, Padmanee (August 2011). "Cancer Immunotherapy: Sipuleucel-T and Beyond". Pharmacotherapy. 31 (8): 813–828. doi: 10.1592/phco.31.8.813. ISSN  0277-0008. PMC  4159742. PMID  21923608.
  18. ^ Anassi, Enock; Ndefo, Uche Anadu (April 2011). "Sipuleucel-T (Provenge) Injection". Pharmacy and Therapeutics. 36 (4): 197–202. ISSN  1052-1372. PMC  3086121. PMID  21572775.
  19. ^ Graff, Julie N; Chamberlain, Erin D (2014-12-18). "Sipuleucel-T in the treatment of prostate cancer: an evidence-based review of its place in therapy". Core Evidence. 10: 1–10. doi: 10.2147/CE.S54712. ISSN  1555-1741. PMC  4279604. PMID  25565923.
  20. ^ Rini, Brian I.; Weinberg, Vivian; Fong, Lawrence; Conry, Shauna; Hershberg, Robert M.; Small, Eric J. (2006-07-01). "Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy". Cancer. 107 (1): 67–74. doi: 10.1002/cncr.21956. ISSN  0008-543X. PMID  16736512. S2CID  25676266.
  21. ^ Eager, Robert; Nemunaitis, John (2005-07-01). "GM-CSF Gene-Transduced Tumor Vaccines". Molecular Therapy. 12 (1): 18–27. doi: 10.1016/j.ymthe.2005.02.012. PMID  15963916.