From Wikipedia, the free encyclopedia

Cross dehydrogenative coupling (also known as CDC reaction), coined by Chao-Jun Li of McGill University, [1] [2] [3] [4] is a type of coupling reaction allowing the construction of a carbon–carbon bond [5] or C-Heteroatom bond [6] directly from C-H bonds in the presence of an oxidant, leading to the thermodynamically unfavorable formal removal of a H2 molecule. As such, CDC are couplings belonging to the C-H activation strategy.


Cross-dehydrogenative-coupling between two C-H bonds.


The key to the CDC coupling is eliminating the need for substrate prefunctionalization. Therefore, the CDC reaction has the advantages of high efficiency, Atom economy and environmental friendliness. Such reactions can be achieved or activated by transition-metal catalysis or oxidation reaction (e.g. benzoquinone, peroxides, O2, hypervalent iodine), or by either photocatalysis or electrocatalysis. The mechanism and reactivity of the CDC reactions varies dramatically depending on the substrate. [7] [8] CDC reactions have been used to construct bonds between sp3-sp3, sp3-sp2, sp3-sp, sp2-sp2, sp2-sp and sp-sp C-H bonds. [9] [10] The synthesis and functionalization of various nitrogen, oxygen and sulfur-containing heterocycles have also been achieved via CDC. [11]

See also

References

  1. ^ Li, Chao-Jun (2009-02-17). "Cross-Dehydrogenative Coupling (CDC): Exploring C−C Bond Formations beyond Functional Group Transformations". Accounts of Chemical Research. 42 (2): 335–344. doi: 10.1021/ar800164n. ISSN  0001-4842. PMID  19220064.
  2. ^ Li, Z.; Bohle, D. S.; Li, C.-J. (2006-06-13). "Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds". Proceedings of the National Academy of Sciences. 103 (24): 8928–8933. Bibcode: 2006PNAS..103.8928L. doi: 10.1073/pnas.0601687103. ISSN  0027-8424. PMC  1482542. PMID  16754869.
  3. ^ "Cross-Dehydrogenative Coupling". Chemistry LibreTexts. 2016-12-17. Retrieved 2020-10-22.
  4. ^ Li, Chao-Jun, ed. (2014). From C-H to C-C Bonds. Green Chemistry Series. doi: 10.1039/9781782620082. ISBN  978-1-84973-797-5. ISSN  1757-7047.
  5. ^ Yeung, Charles S.; Dong, Vy M. (2011-03-09). "Catalytic Dehydrogenative Cross-Coupling: Forming Carbon−Carbon Bonds by Oxidizing Two Carbon−Hydrogen Bonds". Chemical Reviews. 111 (3): 1215–1292. doi: 10.1021/cr100280d. ISSN  0009-2665. PMID  21391561.
  6. ^ Krylov, Igor B.; Vil’, Vera A.; Terent’ev, Alexander O. (2015-01-20). "Cross-dehydrogenative coupling for the intermolecular C–O bond formation". Beilstein Journal of Organic Chemistry. 11 (1): 92–146. doi: 10.3762/bjoc.11.13. ISSN  1860-5397. PMC  4311763. PMID  25670997.
  7. ^ Tsang, Althea S.-K.; Park, Soo J.; Todd, Matthew H. (2014), Li, Chao-Jun (ed.), CHAPTER 11. Mechanisms of Cross-Dehydrogenative-Coupling Reactions, Green Chemistry Series, Cambridge: Royal Society of Chemistry, pp. 254–294, doi: 10.1039/9781782620082-00254, ISBN  978-1-84973-797-5, retrieved 2020-10-22
  8. ^ Huang, Chia-Yu; Kang, Hyotaik; Li, Jianbin; Li, Chao-Jun (2019-10-18). "En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions". The Journal of Organic Chemistry. 84 (20): 12705–12721. doi: 10.1021/acs.joc.9b01704. ISSN  0022-3263. PMID  31441304. S2CID  201617266.
  9. ^ Girard, Simon A.; Knauber, Thomas; Li, Chao-Jun (2014-01-03). "The Cross-Dehydrogenative Coupling of C sp 3H Bonds: A Versatile Strategy for CC Bond Formations". Angewandte Chemie International Edition. 53 (1): 74–100. doi: 10.1002/anie.201304268. PMID  24214829.
  10. ^ Scheuermann, Caroline J. (2010-03-01). "Beyond Traditional Cross Couplings: The Scope of the Cross Dehydrogenative Coupling Reaction". Chemistry: An Asian Journal. 5 (3): 436–451. doi: 10.1002/asia.200900487. PMID  20041458.
  11. ^ Srivastava, Ananya; Jana, Chandan K., eds. (2019). Heterocycles via Cross Dehydrogenative Coupling: Synthesis and Functionalization. Singapore: Springer Singapore. doi: 10.1007/978-981-13-9144-6. ISBN  978-981-13-9143-9. S2CID  201623590.