From Wikipedia, the free encyclopedia
Biopterin_H
crystal structure of ternary complex of the catalytic domain of human phenylalanine hydroxylase (Fe(II)) complexed with tetrahydrobiopterin and norleucine
Identifiers
SymbolBiopterin_H
Pfam PF00351
InterPro IPR019774
PROSITE PDOC00316
SCOP2 1toh / SCOPe / SUPFAM
CDD cd00361
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Biopterin-dependent aromatic amino acid hydroxylases (AAAH) are a family of aromatic amino acid hydroxylase enzymes which includes phenylalanine 4-hydroxylase ( EC 1.14.16.1), tyrosine 3-hydroxylase ( EC 1.14.16.2), and tryptophan 5-hydroxylase ( EC 1.14.16.4). These enzymes primarily hydroxylate the amino acids L-phenylalanine, L-tyrosine, and L-tryptophan, respectively.

The AAAH enzymes are functionally and structurally related proteins which act as rate-limiting catalysts for important metabolic pathways. [1] Each AAAH enzyme contains iron and catalyzes the ring hydroxylation of aromatic amino acids using tetrahydrobiopterin (BH4) as a substrate. The AAAH enzymes are regulated by phosphorylation at serines in their N-termini.

Role in metabolism

In humans, phenylalanine hydroxylase deficiency can cause phenylketonuria, the most common inborn error of amino acid metabolism. [2] Phenylalanine hydroxylase catalyzes the conversion of L-phenylalanine to L-tyrosine. Tyrosine hydroxylase catalyzes the rate-limiting step in catecholamine biosynthesis: the conversion of L-tyrosine to L-DOPA. Similarly, tryptophan hydroxylase catalyzes the rate-limiting step in serotonin biosynthesis: the conversion of L-tryptophan to 5-hydroxy-L-tryptophan.

Structure

It has been suggested that the AAAH enzymes each contain a conserved C-terminal catalytic (C) domain and an unrelated N-terminal regulatory (R) domain. It is possible that the R protein domains arose from genes that were recruited from different sources to combine with the common gene for the catalytic core. Thus, by combining with the same C domain, the proteins acquired the unique regulatory properties of the separate R domains.

References

  1. ^ Grenett HE, Ledley FD, Reed LL, Woo SL (August 1987). "Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases". Proc. Natl. Acad. Sci. U.S.A. 84 (16): 5530–4. Bibcode: 1987PNAS...84.5530G. doi: 10.1073/pnas.84.16.5530. PMC  298896. PMID  3475690.
  2. ^ Erlandsen H, Fusetti F, Martinez A, Hough E, Flatmark T, Stevens RC (December 1997). "Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria". Nat. Struct. Biol. 4 (12): 995–1000. doi: 10.1038/nsb1297-995. PMID  9406548. S2CID  6293946.
  3. ^ Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacology & Therapeutics. 125 (3): 363–375. doi: 10.1016/j.pharmthera.2009.11.005. PMID  19948186.
  4. ^ Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological Sciences. 26 (5): 274–281. doi: 10.1016/j.tips.2005.03.007. PMID  15860375.
  5. ^ Wang X, Li J, Dong G, Yue J (February 2014). "The endogenous substrates of brain CYP2D". European Journal of Pharmacology. 724: 211–218. doi: 10.1016/j.ejphar.2013.12.025. PMID  24374199.
This article incorporates text from the public domain Pfam and InterPro: IPR019774